Journal Home > Volume 7 , Issue 1

Low-dimensional H2 aggregates have been successfully fabricated on Au(111) surfaces and investigated by means of low temperature scanning tunneling microscopy. We use manganese phthalocyanine (MnPc) molecules anchored on the Au(111) surface to efficiently collect and pin hydrogen molecules. A two-dimensional (2D) molecular hydrogen cluster is formed around the MnPc. The hydrogen cluster exhibits bias-dependent topography and spatial-dependent conductance spectra, which are rationalized by the exponentially decreasing threshold energy with distance from the central MnPc to activate the motion of the H2 molecules. This exponential drop reveals an interfacial phase behavior in the 2D cluster.


menu
Abstract
Full text
Outline
About this article

Construction of two-dimensional hydrogen clusters on Au(111) directed by phthalocyanine molecules

Show Author's information Kai YangWende XiaoLiwei LiuXiangmin FeiHui ChenShixuan DuHong-Jun Gao( )
Institute of Physics Chinese Academy of SciencesBeijing 100190 China

Abstract

Low-dimensional H2 aggregates have been successfully fabricated on Au(111) surfaces and investigated by means of low temperature scanning tunneling microscopy. We use manganese phthalocyanine (MnPc) molecules anchored on the Au(111) surface to efficiently collect and pin hydrogen molecules. A two-dimensional (2D) molecular hydrogen cluster is formed around the MnPc. The hydrogen cluster exhibits bias-dependent topography and spatial-dependent conductance spectra, which are rationalized by the exponentially decreasing threshold energy with distance from the central MnPc to activate the motion of the H2 molecules. This exponential drop reveals an interfacial phase behavior in the 2D cluster.

Keywords: hydrogen, scanning tunneling microscopy, Au(111), manganese phthalocyanine, interfacial phase

References(28)

1

Chopra, I. S.; Chaudhuri, S.; Veyan, J. F.; Chabal, Y. J. Turning aluminium into a noble-metal-like catalyst for low-temperature activation of molecular hydrogen. Nat. Mater. 2011, 10, 884–889.

2

Mao, H. -K.; Hemley, R. J. Ultrahigh-pressure transitions in solid hydrogen. Rev. Mod. Phys. 1994, 66, 671–692.

3

Halperin, W. P. Quantum size effects in metal particles. Rev. Mod. Phys. 1986, 58, 533–606.

4

Qin, S. Y.; Kim, J.; Niu, Q.; Shih, C. -K. Superconductivity at the two-dimensional limit. Science2009, 324, 1314–1317.

5

Brun, C.; Hong, I. P.; Patthey, F.; Sklyadneva, I. Y.; Heid, R.; Echenique, P. M.; Bohnen, K. P.; Chulkov, E. V.; Schneider, W. -D. Reduction of the superconducting gap of ultrathin Pb islands grown on Si(111). Phys. Rev. Lett. 2009, 102, 207002.

6

Crommie, M. F.; Lutz, C. P.; Eigler, D. M. Confinement of electrons to quantum corrals on a metal surface. Science1993, 262, 218–220.

7

Loth, S.; Baumann, S.; Lutz, C. P.; Eigler, D. M.; Heinrich, A. J. Bistability in atomic-scale antiferromagnets. Science2012, 335, 196–199.

8

Gupta, J. A.; Lutz, C. P.; Heinrich, A. J.; Eigler, D. M. Strongly coverage-dependent excitations of adsorbed molecular hydrogen. Phys. Rev. B2005, 71, 115416.

9

Lotze, C.; Corso, M.; Franke, K. J.; von Oppen, F.; Pascual, J. I. Driving a macroscopic oscillator with the stochastic motion of a hydrogen molecule. Science2012, 338, 779–782.

10

Lu, X.; Hipps, K. W. Scanning tunneling microscopy of metal phthalocyanines: d6 and d8 cases. J. Phys. Chem. B1997, 101, 5391–5396.

11

Liu, L. W.; Yang, K.; Jiang, Y. H.; Song, B. Q.; Xiao, W. D.; Li, L. F.; Zhou, H. T.; Wang, Y. L.; Du, S. X.; Ouyang, M.; et al. Reversible single spin control of individual magnetic molecule by hydrogen atom adsorption. Sci. Rep. 2013, 3, 1210.

12

Liu, L. W.; Yang, K.; Xiao, W. D.; Jiang, Y. H.; Song, B. Q.; Du, S. X.; Gao, H. J. Selective adsorption of metal–phthalocyanine on Au(111) surface with hydrogen atoms. Appl. Phys. Lett. 2013, 103, 023110-5.

13

Barth, J. V.; Brune, H.; Ertl, G.; Behm, R. J. Scanning tunneling microscopy observations on the reconstructed Au(111) surface: Atomic structure, long-range superstructure, rotational domains, and surface defects. Phys. Rev. B1990, 42, 9307–9318.

14

Yokoyama, T.; Yokoyama, S.; Kamikado, T.; Okuno, Y.; Mashiko, S. Selective assembly on a surface of supramolecular aggregates with controlled size and shape. Nature2001, 413, 619–621.

15

Xiao, W.; Ruffieux, P.; Aït-Mansour, K.; Gröning, O.; Palotas, K.; Hofer, W. A.; Gröning, P.; Fasel, R. Formation of a regular fullerene nanochain lattice. J. Phys. Chem. B2006, 110, 21394–21398.

16

Jiang, Y. H.; Xiao, W. D.; Liu, L. W.; Zhang, L. Z.; Lian, J. C.; Yang, K.; Du, S. X.; Gao, H. -J. Self-assembly of metal phthalocyanines on Pb(111) and Au(111) surfaces at submonolayer coverage. J. Phys. Chem. C2011, 115, 21750–21754.

17

Stobiński, L.; Duś, R. Molecular hydrogen chemisorption on thin unsintered gold films deposited at low temperature. Surf. Sci. 1993, 298, 101–106.

18

Temirov, R.; Soubatch, S.; Neucheva, O.; Lassise, A. C.; Tautz, F. S. A novel method achieving ultra-high geometrical resolution in scanning tunnelling microscopy. New J. Phys. 2008, 10, 053012.

19

Ralph, D. C.; Buhrman, R. A. Observations of Kondo scattering without magnetic impurities: A point contact study of two-level tunneling systems in metals. Phys. Rev. Lett. 1992, 69, 2118–2121.

20

Halbritter, A.; Borda, L.; Zawadowski, A. Slow two-level systems in point contacts. Adv. Phys. 2004, 53, 939–1010.

21

Thijssen, W. H. A.; Djukic, D.; Otte, A. F.; Bremmer, R. H.; van Ruitenbeek, J. M. Vibrationally induced two-level systems in single-molecule junctions. Phys. Rev. Lett. 2006, 97, 226806.

22

Gaudioso, J.; Lauhon, L. J.; Ho, W. Vibrationally mediated negative differential resistance in a single molecule. Phys. Rev. Lett. 2000, 85, 1918–1921.

23

Stipe, B. C.; Rezaei, M. A.; Ho, W. Single-molecule vibrational spectroscopy and microscopy. Science1998, 280, 1732–1735.

24

Smit, R. H. M.; Noat, Y.; Untiedt, C.; Lang, N. D.; van Hemert, M. C.; van Ruitenbeek, J. M. Measurement of the conductance of a hydrogen molecule. Nature2002, 419, 906–909.

25

Kozub, V. I.; Rudin, A. M.; Schober, H. R. Adiabatic electron renormalization of dynamical defects and point contact resistance anomalies. Solid State Commun. 1995, 95, 415– 419.

26

von Delft, J.; Ralph, D. C.; Buhrman, R. A.; Upadhyay, S. K.; Louie, R. N.; Ludwig, A. W. W.; Ambegaokar, V. The 2-channel Kondo model: I. Review of experimental evidence for its realization in metal nanoconstrictions. Ann. Phys–New York1998, 263, 1–55.

27

Cox, D. L.; Zawadowski, A. Exotic Kondo effects in metals: Magnetic ions in a crystalline electric field and tunnelling centres. Adv. Phys. 1998, 47, 599–942.

28

Luo, J.; Cheng, H.; Asl, K. M.; Kiely, C. J.; Harmer, M. P. The role of a bilayer interfacial phase on liquid metal embrittlement. Science2011, 333, 1730–1733.

Publication history
Copyright
Acknowledgements

Publication history

Received: 26 August 2013
Revised: 19 September 2013
Accepted: 21 September 2013
Published: 26 October 2013
Issue date: January 2014

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Nos. 51210003 and 11290165), National Basic Research Program of China (No. 2009CB929103), TRR61 and Chinese Academy of Sciences.

Return