Journal Home > Volume 6 , Issue 12

Due to their excellent electrical properties and compatibility with room-temperature deposition/printing processing, high-purity single-walled semiconducting carbon nanotubes hold great potential for macroelectronic applications such as in thin-film transistors and display back-panel electronics. However, the relative advantages and disadvantages of various nanotubes for macroelectronics remains an open issue, despite the great significance. Here in this paper, we report a comparative and systematic study of three kinds of mainstream carbon nanotubes (arc-discharge, HiPCO, CoMoCAT) separated using low-cost gel-based column chromatography for thin-film transistor applications, and high performance transistors-which satisfy the requirements for transistors used in active matrix organic light-emitting diode displays-have been achieved. We observe a trade-off between transistor mobility and on/off ratio depending on the nanotube diameter. While arc-discharge nanotubes with larger diameters lead to high device mobility, HiPCO and CoMoCAT nanotubes with smaller diameters can provide high on/off ratios (> 106) for transistors with comparable dimensions. Furthermore, we have also compared gel-based separated nanotubes with nanotubes separated using the density gradient ultracentrifuge (DGU) method, and find that gel-separated nanotubes can offer purity and thin-film transistor performance as good as DGU-separated nanotubes. Our approach can serve as the critical foundation for future carbon nanotube-based thin-film macroelectronics.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Comparative study of gel-based separated arcdischarge, HiPCO, and CoMoCAT carbon nanotubes for macroelectronic applications

Show Author's information Jialu Zhang1,§Hui Gui2,§Bilu Liu1Jia Liu3Chongwu Zhou1( )
Department of Electrical EngineeringUniversity of Southern CaliforniaLos AngelesCalifornia90089USA
Department of Material ScienceUniversity of Southern CaliforniaLos AngelesCalifornia90089USA
Department of ChemistryUniversity of Southern CaliforniaLos AngelesCalifornia90089USA

§These authors contributed equally to this work.

Abstract

Due to their excellent electrical properties and compatibility with room-temperature deposition/printing processing, high-purity single-walled semiconducting carbon nanotubes hold great potential for macroelectronic applications such as in thin-film transistors and display back-panel electronics. However, the relative advantages and disadvantages of various nanotubes for macroelectronics remains an open issue, despite the great significance. Here in this paper, we report a comparative and systematic study of three kinds of mainstream carbon nanotubes (arc-discharge, HiPCO, CoMoCAT) separated using low-cost gel-based column chromatography for thin-film transistor applications, and high performance transistors-which satisfy the requirements for transistors used in active matrix organic light-emitting diode displays-have been achieved. We observe a trade-off between transistor mobility and on/off ratio depending on the nanotube diameter. While arc-discharge nanotubes with larger diameters lead to high device mobility, HiPCO and CoMoCAT nanotubes with smaller diameters can provide high on/off ratios (> 106) for transistors with comparable dimensions. Furthermore, we have also compared gel-based separated nanotubes with nanotubes separated using the density gradient ultracentrifuge (DGU) method, and find that gel-separated nanotubes can offer purity and thin-film transistor performance as good as DGU-separated nanotubes. Our approach can serve as the critical foundation for future carbon nanotube-based thin-film macroelectronics.

Keywords: chromatography, purity of semiconducting nanotubes, diameter-dependence

References(43)

1

Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.

2

Bockrath, M.; Cobden, D. H.; McEuen, P. L.; Chopra, N. G.; Zettl, A.; Thess, A.; Smalley, R. E. Single-electron transport in ropes of carbon nanotubes. Science 1997, 275, 1922–1925.

3

Odom, T. W.; Huang, J. L.; Kim, P.; Lieber, C. M. Atomic structure and electronic properties of single-walled carbon nanotubes. Nature 1998, 391, 62–64.

4

Wilder, J. W. G.; Venema, L. C.; Rinzler, A. G.; Smalley, R. E.; Dekker, C. Electronic structure of atomically resolved carbon nanotubes. Nature 1998, 391, 59–62.

5

Bachtold, A.; Hadley, P.; Nakanishi, T.; Dekker, C. Logic circuits with carbon nanotube transistors. Science 2001, 294, 1317–1320.

6

Javey, A.; Guo, J.; Wang, Q.; Lundstrom, M.; Dai, H. J. Ballistic carbon nanotube field-effect transistors. Nature 2003, 424, 654–657.

7

Chen, Z. H.; Appenzeller, J.; Lin, Y. M.; Sippel-Oakley, J.; Rinzler, A. G.; Tang, J. Y.; Wind, S. J.; Solomon, P. M.; Avouris, P. An integrated logic circuit assembled on a single carbon nanotube. Science 2006, 311, 1735.

8

Liu, X. L.; Lee, C. L.; Zhou, C. W.; Han, J. Carbon nanotube field-effect inverters. Appl. Phys. Lett. 2001, 79, 3329–3331.

9

Ryu, K. M.; Badmaev, A.; Wang, C.; Lin, A.; Patil, N.; Gomez, L.; Kumar, A.; Mitra, S.; Wong, H. S. P.; Zhou, C. W. CMOS-analogous wafer-scale nanotube-on-insulator approach for submicrometer devices and integrated circuits using aligned nanotubes. Nano Lett. 2009, 9, 189–197.

10

Kang, S. J.; Kocabas, C.; Ozel, T.; Shim, M.; Pimparkar, N.; Alam, M. A.; Rotkin, S. V.; Rogers, J. A. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat. Nanotechnol. 2007, 2, 230–236.

11

Ding, L.; Zhang, Z. Y.; Liang, S. B.; Pei, T.; Wang, S.; Li, Y.; Zhou, W. W.; Liu, J.; Peng, L. M. CMOS-based carbon nanotube pass-transistor logic integrated circuits. Nat. Commun. 2012, 3, 667.

12

Franklin, A. D.; Chen, Z. H. Length scaling of carbon nanotube transistors. Nat. Nanotechnol. 2010, 5, 858–862.

13

Wang, C.; Zhang, J. L.; Ryu, K. M.; Badmaev, A.; De Arco, L. G.; Zhou, C. W. Wafer-scale fabrication of separated carbon nanotube thin-film transistors for display applications. Nano Lett. 2009, 9, 4285–4291.

14

Snell, A. J.; Mackenzie, K. D.; Spear, W. E.; LeComber, P. G.; Hughes, A. J. Application of amorphous-silicon field-effect transistors in addressable liquidcrystal display panels. Appl. Phys. 1981, 24, 357–362.

15

Forrest, S. R. The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 2004, 428, 911–918.

16

Gelinck, G. H.; Huitema, H. E.; van Veenendaal, E.; Cantatore, E.; Schrijnemakers, L.; van der Putten, J. B. P. H.; Geuns, T. C. T.; Beenhakkers, M.; Giesbers, J. B.; Huisman, B. H. et al. Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nat. Mater. 2004, 3, 106–110.

17

Klauk, H.; Halik, M.; Zschieschang, U.; Eder, F.; Rohde, D.; Schmid, G.; Dehm, C. Flexible organic complementary circuits. IEEE Trans. Electron Devices 2005, 52, 618–622.

18

Uchikoga, S. Low-temperature polycrystalline silicon thin-film transistor technologies for system-on-glass displays. MRS Bull. 2002, 27, 881–886.

19

Chang, C. P.; Wu, Y. S. Improved electrical performance of MILC poly-Si TFTs using CF4 plasma by etching surface of channel. IEEE Electron Device Lett. 2009, 30, 130–132.

20

Nomura, K.; Ohta, H.; Ueda, K.; Kamiya, T.; Hirano, M.; Hosono, H. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor. Science 2003, 300, 1269–1272.

21

Nomura, K.; Ohta, H.; Takagi, A.; Kamiya, T.; Hirano, M.; Hosono, H. Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature 2004, 432, 488–492.

22

Arnold, M. S.; Stupp, S. I.; Hersam, M. C. Enrichment of single-walled carbon nanotubes by diameter in density gradients. Nano Lett. 2005, 5, 713–718.

23

Arnold, M. S.; Green, A. A.; Hulvat, J. F.; Stupp, S. I.; Hersam, M. C. Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 2006, 1, 60–65.

24

Engel, M.; Small, J. P.; Steiner, M.; Freitag, M.; Green, A. A.; Hersam, M. C.; Avouris, P. Thin film nanotube transistors based on self-assembled, aligned, semiconducting carbon nanotube arrays. ACS Nano 2008, 2, 2445–2452.

25

Sangwan, V. K.; Ortiz, R. P.; Alaboson, J. M. P.; Emery, J. D.; Bedzyk, M. J.; Lauhon, L. J.; Marks, T. J.; Hersam, M. C. Fundamental performance limits of carbon nanotube thin-film transistors achieved using hybrid molecular dielectrics. ACS Nano 2012, 6, 7480–7488.

26

Wang, C.; Zhang, J. L.; Zhou, C. W. Macroelectronic integrated circuits using high-performance separated carbon nanotube thin-film transistors. ACS Nano 2010, 4, 7123–7132.

27

Zhang, J. L.; Wang, C.; Fu, Y.; He, Y. C.; Zhou, C. W. Air-stable conversion of separated carbon nanotube thin-film transistors from p-type to n-type using atomic layer deposition of high-kappa oxide and its application in CMOS logic circuits. ACS Nano 2011, 5, 3284–3292.

28

Zhang, J. L.; Wang, C.; Zhou, C. W. Rigid/flexible transparent electronics based on separated carbon nanotube thin-film transistors and their application in display electronics. ACS Nano 2012, 6, 7412–7419.

29

Zhang, J. L.; Fu, Y.; Wang, C.; Chen, P. C.; Liu, Z. W.; Wei, W.; Wu, C.; Thompson, M. E.; Zhou, C. W. Separated carbon nanotube macroelectronics for active matrix organic light-emitting diode displays. Nano Lett. 2011, 11, 4852–4858.

30

Tanaka, T.; Jin, H. H.; Miyata, Y.; Fujii, S.; Suga, H.; Naitoh, Y.; Minari, T.; Miyadera, T.; Tsukagoshi, K.; Kataura, H. Simple and scalable gel-based separation of metallic and semiconducting carbon nanotubes. Nano Lett. 2009, 9, 1497–1500.

31

Moshammer, K.; Hennrich, F.; Kappes, M. M. Selective suspension in aqueous sodium dodecyl sulfate according to electronic structure type allows simple separation of metallic from semiconducting single-walled carbon nanotubes. Nano Res. 2009, 2, 599–606.

32

Liu, H. P.; Nishide, D.; Tanaka, T.; Kataura, H. Large-scale single-chirality separation of single-wall carbon nanotubes by simple gel chromatography. Nat. Commun. 2011, 2, 309.

33

Gui, H.; Li, H. B.; Tan, F. R.; Jin, H. H.; Zhang, J.; Li, Q. W. Binary gradient elution of semiconducting single-walled carbon nanotubes by gel chromatography for their separation according to chirality. Carbon 2012, 50, 332–335.

34

Miyata, Y.; Shiozawa, K.; Asada, Y.; Ohno, Y.; Kitaura, R.; Mizutani, T.; Shinohara, H. Length-sorted semiconducting carbon nanotubes for high-mobility thin film transistors. Nano Res. 2011, 4, 963–970.

35

Miyata, Y.; Yanagi, K.; Maniwa, Y.; Kataura, H. Optical evaluation of the metal-to-semiconductor ratio of single-wall carbon nanotubes. J. Phys. Chem. C 2008, 112, 13187–13191.

36

Nirmalraj, P. N.; Lyons, P. E.; De, S.; Coleman, J. N.; Boland, J. J. Electrical connectivity in single-walled carbon nanotube networks. Nano Lett. 2009, 9, 3890–3895.

37

Asada, Y.; Nihey, F.; Ohmori, S.; Shinohara, H.; Saito, T. Diameter-dependent performance of single-walled carbon nanotube thin-film transistors. Adv. Mater. 2011, 23, 4631–4635.

38

Pike, G. E.; Seager, C. H. Percolation and conductivity: A computer study. I. Phys. Rev. B 1974, 10, 1421–1434.

39

Kwon, O. K. TFT mobility requirement for AMOLED HDTVs. Thin film transistor technologies (TFTT VII): proceedings of the international symposium 2004, 146.

40

Gu, G.; Forrest, S. R. Design of flat-panel displays based on organic light-emitting devices. IEEE J. Sel. Top. Quantum Electron. 1998, 4, 83–99.

41

Kang, S. J.; Kocabas, C.; Ozel, T.; Shim, M.; Pimparkar, N.; Alam, M. A.; Rotkin, S. V.; Rogers, J. A. High-performance electronics using dense, perfectly aligned arrays of single-walled carbon nanotubes. Nat. Nanotechnol. 2007, 2, 230–236.

42

Cao, Q.; Xia, M. G.; Kocabas, C.; Shim, M.; Rogers, J. A.; Rotkin, S. V. Gate capacitance coupling of singled-walled carbon nanotube thin-film transistors. Appl. Phys. Lett. 2007, 90, 023516.

43

Rosenblatt, S.; Yaish, Y.; Park, J.; Gore, J.; Sazonova, V.; McEuen, P. L. High performance electrolyte gated carbon nanotube transistors. Nano Lett. 2002, 2, 869–872.

File
nr-6-12-906_ESM.pdf (731.9 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 26 June 2013
Revised: 03 September 2013
Accepted: 05 September 2013
Published: 30 October 2013
Issue date: December 2013

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Acknowledgements

Acknowledgements

We acknowledge financial support from Joint King Abdulaziz City for Science and Technology (KACST)/ California Center of Excellence. We thank Dr. Ming Zheng of National Institute of Standards and Technology for valuable discussions.

Return