Journal Home > Volume 6 , Issue 12

With recent developments in the search for novel device ideas, understanding electron-electron interaction in low dimensional systems is of particular interest. Coulomb drag measurements can provide critical insights in this context. In this article, we present a novel planar graphene double ribbon structure that shows for the first time that Coulomb drag is observable in two adjacent monolayer ribbons in the same plane at room temperature. Moreover, our planar devices enable experimentally study of the impact of the dielectric constant on Coulomb drag which is difficult to explore in the typically used double layer graphene structures. Our experimental findings indicate in particular that the drag resistance is proportional to the dielectric constant (ε) and does not, as recently reported, show an increasing trend of interaction strength for small ε-values. In fact, we find that the drag resistance follows approximately an ε 1.2-dependence. The exponent of "1.2" is consistent with the theory considering the carrier concentration in our samples, and positions our results in between the weak and strong coupling limits.


menu
Abstract
Full text
Outline
About this article

Coulomb drag between in-plane graphene double ribbons and the impact of the dielectric constant

Show Author's information Hongyan Chen( )Joerg Appenzeller( )
Electrical and Computer Engineering DepartmentPurdue UniversityWest LafayetteIN47907USA

Abstract

With recent developments in the search for novel device ideas, understanding electron-electron interaction in low dimensional systems is of particular interest. Coulomb drag measurements can provide critical insights in this context. In this article, we present a novel planar graphene double ribbon structure that shows for the first time that Coulomb drag is observable in two adjacent monolayer ribbons in the same plane at room temperature. Moreover, our planar devices enable experimentally study of the impact of the dielectric constant on Coulomb drag which is difficult to explore in the typically used double layer graphene structures. Our experimental findings indicate in particular that the drag resistance is proportional to the dielectric constant (ε) and does not, as recently reported, show an increasing trend of interaction strength for small ε-values. In fact, we find that the drag resistance follows approximately an ε 1.2-dependence. The exponent of "1.2" is consistent with the theory considering the carrier concentration in our samples, and positions our results in between the weak and strong coupling limits.

Keywords: scattering, dielectric, Coulomb drag, graphene ribbon, electron–electron interactions

References(45)

1

Eisenstein, J. P.; Macdonald, A. H. Bose–Einstein condensation of excitons in bilayer electron systems. Nature 2004, 432, 691–694.

2

Datta, S.; Melloch, M.; Gunshor, R. Possibility of an excitonic ground state in quantum wells. Phys. Rev. B 1985, 32, 2607–2609.

3

Shevchenko, S. Phase diagram of systems with pairing of spatially separated electrons and holes. Phys. Rev. Lett. 1994, 72, 3242–3245.

4

Shevchenko, S. Quantized vortices in systems with pairing of spatially separated electrons and holes. Low Temp. Phys. 1997, 23, 741.

5

Yoon, Y.; Tiemann, L.; Schmult, S.; Dietsche, W.; von Klitzing, K. Interlayer tunneling in counterflow experiments on the excitonic condensate in quantum hall bilayers. Phys. Rev. Lett. 2010, 104, 116802.

6

Tutuc, E.; Shayegan, M. Charge neutral counterflow transport at filling factor 1 in GaAs hole bilayers. Solid State Commun. 2007, 144, 405–408.

7

Min, H.; Bistritzer, R.; Su, J.; MacDonald, A. Room-temperature superfluidity in graphene bilayers. Phys. Rev. B. 2008, 78, 121401–121404.

8

Su, J. J.; MacDonald, A. H. How to make a bilayer exciton condensate flow. Nat. Phys. 2008, 4, 799–802.

9

Min, H.; Bistritzer, R.; Su, J.; MacDonald, A. Room-temperature superfluidity in graphene bilayers. Phys. Rev. B 2008, 78, 121401.

10

Gramila, T.; Eisenstein, J.; MacDonald, A.; Pfeiffer, L.; West, K. Mutual friction between parallel two-dimensional electron systems. Phys. Rev. Lett. 1991, 66, 1216–1219.

11

Sivan, U.; Solomon, P.; Shtrikman, H. Coupled electron–hole transport. Phys. Rev. Lett. 1992, 68, 1196–1199.

12

Solomon, P.; Price, P.; Frank, D.; La Tulipe, D. New phenomena in coupled transport between 2D and 3D electron–gas layers. Phys. Rev. Lett. 1989, 63, 2508–2511.

13

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

14

Gorbachev, R. V.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Tudorovskiy, T.; Grigorieva, I. V.; MacDonald, A. H.; Morozov, S. V.; Watanabe, K.; Taniguchi, T. et al. Strong Coulomb drag and broken symmetry in double-layer graphene. Nat. Phys. 2012, 8, 896–901.

15

Kim, S.; Tutuc, E. Coulomb drag and magnetotransport in graphene double layers. Solid State Commun. 2012, 152, 1283–1288.

16

Kim, S.; Dillen, I. Jo. D.; Ferrer, D.; Fallahazad, B.; Yao, Z.; Banerjee, S.; Tutuc, E. Direct measurement of the fermi energy in graphene using a double-layer heterostructure. Phys. Rev. Lett. 2012, 108, 116404–116408.

17

Kim, S.; Jo, I.; Nah, J.; Yao, Z.; Banerjee, S.; Tutuc, E. Coulomb drag of massless fermions in graphene. Phys. Rev. B 2011, 83, 161401–161404.

18

Tse, W. K.; Hu, B.; Das Sarma, S. Theory of Coulomb drag in graphene. Phys. Rev. B 2007, 76, 081401–081404.

19

Hwang, E.; Sensarma, R.; Das Sarma, S. Coulomb drag in monolayer and bilayer graphene Phys. Rev. B 2011, 84, 245441–245449.

20

Katsnelson, M. Coulomb drag in graphene single layers separated by a thin spacer. Phys. Rev. B 2011, 84, 041407–041409.

21

Peres, N. M. R.; Lopes dos Santos, J. M. B.; Castro Neto, A. H. Coulomb drag and high resistivity behavior in double layer graphene. Europhys. Lett. 2011, 95, 18001.

22

Carrega, M.; Tudorovskiy, T.; Katsnelson, M. I.; Polini, M. Theory of Coulomb drag for massless Dirac fermions. New J. Phys. 2012, 14, 063033.

23

Bernstein, K.; Cavin, R. K.; Porod, W.; Seabaugh, A.; Welser, J. Device and architecture outlook for beyond CMOS switches. Proc. IEEE. 2010, 98, 2169–2184.

24

Chen, C. T.; Low, T.; Chiu, H. Y.; Zhu, W. Graphene-side-gate engineering. IEEE Electron Device Lett. 2012, 33, 330–332.

25

Hahnlein, B.; Handel, B.; Pezoldt, J.; Topfer, H.; Granzner, R.; Schwierz, F. Side-gate graphene field-effect transistors with high transconductance. Appl. Phys. Lett. 2012, 101, 093504.

26

Li, X.; Wu, X.; Sprinkle, M.; Ming, F.; Ruan, M.; Hu, Y.; Berger, C.; de Heer, W. Top-and side-gated epitaxial graphene field effect transistors. Phys. Status Solidi A. 2010, 207, 286–290.

27

Tian, J. F.; Jauregui, L.; Lopez, G.; Cao, H.; Chen, Y. P. Ambipolar graphene field effect transistors by local metal side gates. Appl. Phys. Lett. 2010, 96, 263110.

28

Molitor, F.; Jacobsen, A.; Stampfer, C.; Güttinger, J.; Ihn, T.; Ensslin, K. Transport gap in side-gated graphene constrictions. Phys. Rev. B 2009, 79, 075426.

29

Molitor, F.; Güttinger, J.; Stampfer, C.; Graf, D.; Ihn, T.; Ensslin, K. Local gating of a graphene Hall bar by graphene side gates. Phys. Rev. B 2007, 76, 245426–245430.

30

Chen, H. Y.; Appenzeller, J. Graphene-based frequency tripler. Nano lett. 2012, 12, 2067–2070.

31

Chen, H. Y.; Appenzeller, J. Complementary-type graphene inverters operating at room-temperature Device Res. Conf. 2011, 33–34.

32

Chen, H. Y.; Appenzeller, J. On the voltage gain of complementary graphene voltage amplifiers with optimized doping. IEEE Electron Device Lett. 2012, 33, 1462–1464.

33
The voltage detection unit has a very large impedance (10 Mohm) to ground and hence the drag channel (< 150 kohm) can be considered floating.
34

Yamamoto, M.; Stopa, M.; Tokura, Y.; Hirayama, Y.; Tarucha, S. Negative Coulomb drag in a one-dimensional wire. Science 2006, 313, 204–207.

35
Since our Cbg is quite small (90 nm SiO2), contributions from the quantum capacitance can be ignored for carrier concentrations >1011 cm–2.
36

Sui, Y.; Low, T.; Lundstrom, M.; Appenzeller, J. Signatures of disorder in the minimum conductivity of graphene. Nano Lett. 2011, 11, 1319–1322.

37

Martin, J.; Akerman, N.; Ulbricht, G.; Lohmann, T.; Smet, J. H.; von Klitzing, K.; Yacoby, A. Observation of electron–hole puddles in graphene using a scanning single-electron transistor. Nat. Phys. 2007, 4, 144–148.

38

Adam, S.; Hwang, E. H.; Galitski, V. M.; Das Sarma, S. A self-consistent theory for graphene transport. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 18392–18397.

39

Chen, J. H.; Jang, C.; Adam, S.; Fuhrer, M. S.; Williams, E. D.; Ishigami, M. Charged-impurity scattering in graphene. Nat. Phys. 2008, 4, 377–381.

40

Xu, G.; Torres, C. M.; Tang, J.; Bai, J.; Song, E. B.; Huang, Y.; Duan, X.; Zhang, Y.; Wang, K. L. Edge effect on resistance scaling rules in graphene nanostructures. Nano Lett. 2011, 11, 1082–1086.

41

Nakada, K.; Fujita, M.; Dresselhaus, G.; Dresselhaus, M. Edge state in graphene ribbons: Nanometer size effect and edge shape dependence. Phys. Rev. B 1996, 54, 17954–17961.

42

Lee, E. J. H.; Balasubramanian, K.; Weitz, R. T.; Burghard, M.; Kern, K. Nature contact and edge effects in graphene devices. Nat. Nanotechnol. 2008, 3, 486–490.

43

Cresti, A.; Roche, S. Range and correlation effects in edge disordered graphene nanoribbons. New J. Phys. 2009, 11, 095004.

44

Yoon, Y.; Guo, J. Effect of edge roughness in graphene nanoribbon transistors. Appl. Phys. Lett. 2007, 91, 073103.

45
In our quantitative comparison, a minor difference in temperature (295 K in this work and 240 K in Ref. [14]) has not been included.
Publication history
Copyright
Acknowledgements

Publication history

Received: 18 June 2013
Revised: 22 August 2013
Accepted: 03 September 2013
Published: 04 October 2013
Issue date: December 2013

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Acknowledgements

Acknowledgements

Hongyan Chen would like to thank Jiuning Hu for insightful discussions. This work was in part supported by Semiconductor Technology Advanced Research Network (STARnet), a Semiconductor Research Corporation program sponsored by Microelectronics Advanced Research Corporation (MARCO) and Defense Advanced Research Projects Agency (DARPA).

Return