Journal Home > Volume 6 , Issue 12

A facile one-pot method has been developed to synthesize uniform gold@mesoporous silica nanospheres (Au@MSNs), which have a well-defined core–shell structure with ordered mesoporous silica as a shell. The resulting Au@MSNs have a high surface area (~521 m2/g) and uniform pore size (~2.5 nm) for the mesoporous silica shell. The diameter of the gold core can be regulated by adjusting the amount of HAuCl4. The catalytic performance of the Au@MSNs was investigated using the reduction of 4-nitrophenol as a model reaction. The mesopores of the silica shells provide direct access for the reactant molecules to diffuse and subsequently interact with the gold cores. In addition, the Au@MSNs display the great advantage of sintering-resistance to 950 ℃ because the mesoporous silica shells inhibit aggregation or deformation of the gold cores. The high thermal stability enables the Au@MSNs to be employed in high-temperature catalytic reactions.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

One-pot synthesis of thermally stable gold @ mesoporous silica core–shell nanospheres with catalytic activity

Show Author's information Junchen ChenRenyuan ZhangLu HanBo Tu( )Dongyuan Zhao( )
Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative MaterialsLaboratory of Advanced MaterialsFudan UniversityShanghai200433China

Abstract

A facile one-pot method has been developed to synthesize uniform gold@mesoporous silica nanospheres (Au@MSNs), which have a well-defined core–shell structure with ordered mesoporous silica as a shell. The resulting Au@MSNs have a high surface area (~521 m2/g) and uniform pore size (~2.5 nm) for the mesoporous silica shell. The diameter of the gold core can be regulated by adjusting the amount of HAuCl4. The catalytic performance of the Au@MSNs was investigated using the reduction of 4-nitrophenol as a model reaction. The mesopores of the silica shells provide direct access for the reactant molecules to diffuse and subsequently interact with the gold cores. In addition, the Au@MSNs display the great advantage of sintering-resistance to 950 ℃ because the mesoporous silica shells inhibit aggregation or deformation of the gold cores. The high thermal stability enables the Au@MSNs to be employed in high-temperature catalytic reactions.

Keywords: catalysis, gold, synthesis, mesoporous silica, core–shell nanostructures

References(43)

1

Kim, M. G.; Sim, S.; Cho, J. Novel core–shell Sn–Cu anodes for lithium rechargeable batteries prepared by a redox-transmetalation reaction. Adv. Mater. 2010, 22, 5154–5158.

2

Mitsudome, T.; Mikami, Y.; Matoba, M.; Mizugaki, T.; Jitsukawa, K.; Kaneda, K. Design of a silver–cerium dioxide core–shell nanocomposite catalyst for chemoselective reduction reactions. Angew. Chem. Int. Ed. 2012, 51, 136–139.

3

Yuan, C. H.; Luo, W. A.; Zhong, L. N.; Deng, H. J.; Liu, J.; Xu, Y. T.; Dai, L. Z. Gold@polymer nanostructures with tunable permeability shells for selective catalysis. Angew. Chem. Int. Ed. 2011, 50, 3515–3519.

4

Wang, Y. Q.; Chen, L. X.; Liu, P. Biocompatible triplex Ag@SiO2@mTiO2 core–shell nanoparticles for simultaneous fluorescence–SERS bimodal imaging and drug delivery. Chem. Eur. J. 2012, 18, 5935–5943.

5

Wang, A. N.; Peng, Q.; Li, Y. D. Rod-shaped Au–Pd core–shell nanostructures. Chem. Mater. 2011, 23, 3217–3222.

6

Zhao, Z. W.; Liu, J.; Cui, F. Y.; Feng, H.; Zhang, L. L. One pot synthesis of tunable Fe3O4–MnO2 core–shell nanoplates and their applications for water purification. J. Mater. Chem. 2012, 22, 9052–9057.

7

Park, J. C.; Song, H. Metal@silica yolk–shell nanostructures as versatile bifunctional nanocatalysts. Nano Res. 2011, 4, 33–49.

8

Liu, J.; Qiao, S. Z.; Chen, J. S.; Lou, X. W.; Xing, X. R.; Lu, G. Q. Yolk/shell nanoparticles: New platforms for nanoreactors, drug delivery and lithium-ion batteries. Chem. Commun. 2011, 47, 12578–12591.

9

Liu, J.; Yang, H. Q.; Kleitz, F.; Chen, Z. G.; Yang, T. Y.; Strounina, E.; Lu, G. Q.; Qiao, S. Z. Yolk–shell hybrid materials with a periodic mesoporous organosilica shell: Ideal nanoreactors for selective alcohol oxidation. Adv. Funct. Mater. 2012, 22, 591–599.

10

Joo, S. H.; Park, J. Y.; Tsung, C. K.; Yamada, Y.; Yang, P. D.; Somorjai, G. A. Thermally stable Pt/mesoporous silica core–shell nanocatalysts for high-temperature reactions. Nat. Mater. 2009, 8, 126–131.

11

Arnal, P. M.; Comotti, M.; Schüth, F. High-temperature-stable catalysts by hollow sphere encapsulation. Angew. Chem. Int. Ed. 2006, 45, 8224–8227.

12

Lee, I.; Joo, J. B.; Yin, Y. D.; Zaera, F. A yolk@shell nanoarchitecture for Au/TiO2 catalysts. Angew. Chem. Int. Ed. 2011, 50, 10208–10211.

13

Jin, Z.; Wang, F.; Wang, F.; Wang, J. X.; Yu, J. C.; Wang, J. F. Metal nanocrystal-embedded hollow mesoporous TiO2 and ZrO2 microspheres prepared with polystyrene nanospheres as carriers and templates. Adv. Funct. Mater. 2013, 23, 2137–2144.

14

Qiao, Z. A.; Huo, Q. S.; Chi, M. F.; Veith, G. M.; Binder, A. J.; Dai, S. A "ship-in-a-bottle" approach to synthesis of polymer dots@silica or polymer dots@carbon core–shell nanospheres. Adv. Mater. 2012, 24, 6017–6021.

15

Wang, H.; Chen, L. Y.; Feng, Y. H.; Chen, H. Y. Exploiting core–shell synergy for nanosynthesis and mechanistic investigation. Acc. Chem. Res. 2013, 46, 1636–1646.

16

Kresge, C. T.; Leonowicz, M. E.; Roth, W. J.; Vartuli, J. C.; Beck, J. S. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism. Nature 1992, 359, 710–712.

17

Liz-Marzán, L. M.; Giersig, M.; Mulvaney, P. Synthesis of nanosized gold–silica core–shell particles. Langmuir 1996, 12, 4329–4335.

18

Han, L.; Wei, H.; Tu, B.; Zhao, D. Y. A facile one-pot synthesis of uniform core–shell silver nanoparticle@ mesoporous silica nanospheres. Chem. Commun. 2011, 47, 8536–8538.

19

Chen, Y.; Chen, H. R.; Zeng, D. P.; Tian, Y. B.; Chen, F.; Feng, J. W.; Shi, J. L. Core/shell structured hollow mesoporous nanocapsules: A potential platform for simultaneous cell imaging and anticancer drug delivery. ACS Nano 2010, 4, 6001–6013.

20

Pan, J.; Wan, D.; Gong, J. L. PEGylated liposome coated QDs/mesoporous silica core–shell nanoparticles for molecular imaging. Chem. Commun. 2011, 47, 3442–3444.

21

Jun, B. H.; Hwang, D. W.; Jung, H. S.; Jang, J.; Kim, H.; Kang, H.; Kang, T.; Kyeong, S.; Lee, H.; Jeong, D. H.; et al. Ultrasensitive, biocompatible, quantum-dot-embedded silica nanoparticles for bioimaging. Adv. Funct. Mater. 2012, 22, 1843–1849.

22

Pester, C. W.; Konradi, A.; Varnholt, B.; Rijn, P. V.; Böker, A. Responsive macroscopic materials from self-assembled cross-linked SiO2–PNIPAAm core/shell structures. Adv. Funct. Mater. 2012, 22, 1724–1731.

23

Deng, Y. H.; Cai, Y.; Sun, Z. K.; Liu, J.; Liu, C.; Wei, J.; Li, W.; Liu, C.; Wang, Y.; Zhao, D. Y. Multifunctional mesoporous composite microspheres with well-designed nanostructure: A highly integrated catalyst system. J. Am. Chem. Soc. 2010, 132, 8466–8473.

24

Lee, J.; Park, J. C.; Song, H. A nanoreactor framework of a Au@SiO2 yolk/shell structure for catalytic reduction of p-nitrophenol. Adv. Mater. 2008, 20, 1523–1528.

25

Wu, X. L.; Tan, L. F.; Chen, D.; He, X. L.; Liu, H. Y.; Meng, X. W.; Tang, F. Q. Alkylaminosilane-assisted simultaneous etching and growth route to synthesise metal nanoparticles encapsulated by silica nanorattles. Chem. Eur. J. 2012, 18, 15669–15675.

26

Tan, L. F.; Chen, D.; Liu, H. Y.; Tang, F. Q. A silica nanorattle with a mesoporous shell: An ideal nanoreactor for the preparation of tunable gold cores. Adv. Mater. 2010, 22, 4885–4889.

27

Wang, S. N.; Zhang, M. C.; Zhang, W. Q. Yolk–shell catalyst of single Au nanoparticle encapsulated within hollow mesoporous silica microspheres. ACS Catal. 2011, 1, 207–211.

28

Wu, S. H.; Tseng, C. T.; Lin, Y. S.; Lin, C. H.; Hung, Y.; Mou, C. Y. Catalytic nano-rattle of Au@hollow silica: Towards a poison-resistant nanocatalyst. J. Mater. Chem. 2011, 21, 789–794.

29

Zhang, Z. J.; Wang, L. M.; Wang, J.; Jiang, X. M.; Li, X. H.; Hu, Z. J.; Ji, Y. L.; Wu, X. C.; Chen, C. Y. Mesoporous silica-coated gold nanorods as a light-mediated multifunctional theranostic platform for cancer treatment. Adv. Mater. 2012, 24, 1418–1423.

30

Jiang, Z. L.; Dong, B.; Chen, B. T.; Wang, J.; Xu, L.; Zhang, S.; Song, H. W. Multifunctional Au@mSiO2/rhodamine B isothiocyanate nanocomposites: Cell imaging, photocontrolled drug release, and photothermal therapy for cancer cells. Small 2013, 9, 604–612.

31

Liu, S. H.; Han, M. Y. Synthesis, functionalization, and bioconjugation of monodisperse, silica-coated gold nanoparticles: Robust bioprobes. Adv. Funct. Mater. 2005, 15, 961–967.

32

Zhang, Q.; Zhang, T. R.; Ge, J. P.; Yin, Y. D. Permeable silica shell through surface-protected etching. Nano Lett. 2008, 8, 2867–2871.

33

Bahadur, N. M.; Watanabe, S.; Furusawa, T.; Sato, M.; Kurayama, F.; Siddiquey, I. A.; Kobayashi, Y.; Suzuki, N. Rapid one-step synthesis, characterization and functionalization of silica coated gold nanoparticles. Colloids Surf. A 2011, 392, 137–144.

34

Wangoo, N.; Shekhawat, G.; Wu, J. S.; Bhasin, A. K. K.; Suri, C. R.; Bhasin, K. K.; Dravid, V. Green synthesis and characterization of size tunable silica-capped gold core–shell nanoparticles. J. Nanopart. Res. 2012, 14, 1011.

35

Han, Y.; Jiang, J.; Lee, S. S.; Ying, J. Y. Reverse microemulsion-mediated synthesis of silica-coated gold and silver nanoparticles. Langmuir 2008, 24, 5842–5848.

36

Wang, Z. Y.; Zong, S. F.; Chen, H.; Wu, H.; Cui, Y. P. Silica coated gold nanoaggregates prepared by reverse microemulsion method: Dual mode probes for multiplex immunoassay using SERS and fluorescence. Talanta 2011, 86, 170–177.

37

Botella, P.; Corma, A.; Navarro, M. T. Single gold nanoparticles encapsulated in monodispersed regular spheres of mesostructured silica produced by pseudomorphic transformation. Chem. Mater. 2007, 19, 1979–1983

38

Chen, Y.; Chen, H. R.; Guo, L. M.; He, Q. J.; Chen, F.; Zhou, J.; Feng, J. W.; Shi, J. L. Hollow/rattle-type mesoporous nanostructures by a structural difference-based selective etching strategy. ACS Nano 2010, 4, 529–539.

39

Croissant, J.; Zink, J. I. Nanovalve-controlled cargo release activated by plasmonic heating. J. Am. Chem. Soc. 2012, 134, 7628–7631.

40

Wu, C. Z.; Lim, Z. Y.; Zhou, C.; Wang, W. G.; Zhou, S. H.; Yin, H. F.; Zhu, Y. J. A soft-templated method to synthesize sintering-resistant Au–mesoporous–silica core–shell nanocatalysts with sub-5 nm single-cores. Chem. Commun. 2013, 49, 3215–3217.

41

Du, X.; Yao, L.; He, J. H. One-pot fabrication of noble-metal nanoparticles that are encapsulated in hollow silica nanospheres: Dual roles of poly(acrylic acid). Chem. Eur. J. 2012, 18, 7878–7885.

42

Veneziano, R.; Derrien, G.; Tan, S.; Brisson, A.; Devoisselle, J. M.; Chopineau, J.; Charnay, C. One step synthesis of gold-loaded radial mesoporous silica nanospheres and supported lipid bilayer functionalization: Towards bio-multifunctional sensors. Small 2012, 8, 3674–3682.

43

Wang, L.; Cheang, T. Y.; Wang, S. M.; Hu, Z. J.; Xing, Z. H.; Qu, W. G.; Xu, A. W. Monodisperse Au/aminosilica composite nanospheres: Facile one-step synthesis and their applications in gene transfection. J. Mater. Res. 2012, 27, 2425–2430.

File
nr-6-12-871_ESM.pdf (829 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 July 2013
Revised: 14 August 2013
Accepted: 15 August 2013
Published: 03 September 2013
Issue date: December 2013

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Acknowledgements

Acknowledgements

This work was supported by the National Basic Research Program (973 Project) of China (Nos. 2013CB934104 and 2012CB224805), the National Natural Science Foundation of China (No. 21210004), the Shanghai Leading Academic Discipline Project (B108), and the Science and Technology Commission of Shanghai Municipality (No. 08DZ2270500).

Return