Journal Home > Volume 6 , Issue 11

An inkjet-printed graphene film is of great importance for next-generation flexible, low cost and high performance electronic devices. However, due to the limitation of the inkjet printing process, the electrical conductivity of inkjet-printed graphene films is limited to ~10 S·cm–1, and achieving a high conductivity of the printed graphene films remains a big challenge. Here, we develop a "weak oxidation–vigorous exfoliation" strategy to tailor graphene oxide (GO) for meeting all the requirements of highly conductive inkjet-printed graphene films, including a more intact carbon plane and suitable size. The π-conjugated structure of the resulting graphene has been restored to a high degree, and its printed films show an ultrahigh conductivity of ~420 S·cm–1, which is tens of times higher than previously reported results, suggesting that, aside from developing a highly efficient reduction method, tuning the GO structure could be an alternative way to produce high quality graphene sheets. Using inkjet-printed graphene patterns as source/drain/gate electrodes, and semiconducting single-walled carbon nanotubes (SWCNTs) as channels, we fabricated an all-carbon field effect transistor which shows excellent performance (an on/off ratio of ~104 and a mobility of ~8 cm2·V–1·s–1) compared to previously reported CNT-based transistors, promising the use of nanocarbon materials, graphene and SWCNTs in printed electronics, especially where high performance and flexibility are needed.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Reduced graphene oxide with a highly restored π-conjugated structure for inkjet printing and its use in all-carbon transistors

Show Author's information Yang Su§Jinhong Du§Dongming SunChang LiuHuiming Cheng( )
Shenyang National Laboratory for Materials Science Institute of Metal Research Chinese Academy of Sciences 72 Wenhua Road Shenyang 110016 China

§These authors contributed equally to this work.

Abstract

An inkjet-printed graphene film is of great importance for next-generation flexible, low cost and high performance electronic devices. However, due to the limitation of the inkjet printing process, the electrical conductivity of inkjet-printed graphene films is limited to ~10 S·cm–1, and achieving a high conductivity of the printed graphene films remains a big challenge. Here, we develop a "weak oxidation–vigorous exfoliation" strategy to tailor graphene oxide (GO) for meeting all the requirements of highly conductive inkjet-printed graphene films, including a more intact carbon plane and suitable size. The π-conjugated structure of the resulting graphene has been restored to a high degree, and its printed films show an ultrahigh conductivity of ~420 S·cm–1, which is tens of times higher than previously reported results, suggesting that, aside from developing a highly efficient reduction method, tuning the GO structure could be an alternative way to produce high quality graphene sheets. Using inkjet-printed graphene patterns as source/drain/gate electrodes, and semiconducting single-walled carbon nanotubes (SWCNTs) as channels, we fabricated an all-carbon field effect transistor which shows excellent performance (an on/off ratio of ~104 and a mobility of ~8 cm2·V–1·s–1) compared to previously reported CNT-based transistors, promising the use of nanocarbon materials, graphene and SWCNTs in printed electronics, especially where high performance and flexibility are needed.

Keywords: field effect transistor, inkjet printing, graphene oxide, high conductivity

References(45)

1

Derby, B. Inkjet printing of functional and structural materials: Fluid property requirements, feature stability, and resolution. Ann. Rev. Mater. Res. 2010, 40, 395-414.

2

Singh, M.; Haverinen, H. M.; Dhagat, P.; Jabbour, G. E. Inkjet printing—process and its applications. Adv. Mater. 2010, 22, 673–685.

3

Chen, P.; Fu, Y.; Aminirad, R.; Wang, C.; Zhang, J. L.; Wang, K.; Galatsis, K.; Zhou, C. W. Fully printed separated carbon nanotube thin film transistor circuits and its application in organic light emitting diode control. Nano Lett. 2011, 11, 5301–5308.

4

Sirringhaus, H.; Kawase, T.; Friend, R. H.; Shimoda, T.; Inbasekaran, M.; Wu, W.; Woo, E. P. High-resolution inkjet printing of all-polymer transistor circuits. Science 2000, 290, 2123–2126.

5

Morozov, S. V.; Novoselov, K. S.; Katsnelson, M. I.; Schedin, F.; Elias, D. C.; Jaszczak, J. A.; Geim, A. K. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 2008, 100, 016602.

6

Wu, Z. S.; Zhou, G. M.; Yin, L. C.; Ren, W. C.; Li, F.; Cheng, H. M. Graphene/metal oxide composite electrode materials for energy storage. Nano Energy 2012, 1, 107-131.

7

Bae, S.; Kim, H.; Lee, Y.; Xu, X. F.; Park, J. S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H. R.; Song, Y. II. et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotech. 2010, 5, 574-578.

8

Shin, K. Y.; Hong, J. Y.; Jang, J. Micropatterning of graphene sheets by inkjet printing and its wideband dipole-antenna application. Adv. Mater. 2011, 23, 2113–2118.

9

Dua, V.; Surwade, S. P.; Ammu, S.; Agnihotra, S. R.; Jain, S.; Roberts, K. E.; Park, S.; Ruoff, R. S.; Manohar, S. K. All-organic vapor sensor using inkjet-printed reduced graphene oxide. Angew. Chem. Int. Ed. 2010, 49, 2154–2157.

10

Zhang, L.; Liu, H. T.; Zhao, Y.; Sun, X. N.; Wen, Y. G.; Guo, Y. L.; Gao, X. K.; Di, C. A.; Yu, G.; Liu, Y. Q. Inkjet printing high-resolution, large-area graphene patterns by coffee-ring lithography. Adv. Mater. 2012, 24, 436-440.

11

Torrisi, F.; Hasan, T.; Wu, W. P.; Sun, Z. P.; Lombardo, A.; Kulmala, T. S.; Hsieh, G. W.; Jung, S.; Bonaccorso, F.; Paul, P. J. et al. Inkjet-printed graphene electronics. ACS Nano 2012, 6, 2992–3006.

12

Huang, L.; Huang, Y.; Liang, J. J.; Wan, X. J.; Chen, Y. S. Graphene-based conducting inks for direct inkjet printing of flexible conductive patterns and their applications in electric circuits and chemical sensors. Nano Res. 2011, 4, 675-684.

13

Hutchings, I. M. Ink-jet printing in micro-manufacturing: Opportunities and limitations. In 4m/Icomm 2009—the Global Conference on Micro Manufacture. Germany, Karlsruhe, 2009; pp 47–57.

14

Nirmalraj, P. N.; Lutz, T.; Kumar, S.; Duesberg, G. S.; Boland, J. J. Nanoscale mapping of electrical resistivity and connectivity in graphene strips and networks. Nano Lett. 2011, 11, 16–22.

15

Zhao, J. P.; Pei, S. F.; Ren, W. C.; Gao, L. B.; Cheng, H. M. Efficient preparation of large-area graphene oxide sheets for transparent conductive films. ACS Nano 2010, 4, 5245-5252.

16

Su, C. Y.; Xu, Y. P.; Zhang, W. J.; Zhao, J. W.; Tang, X. H.; Tsai, C. H.; Li, L. J. Electrical and spectroscopic characterizations of ultra-large reduced graphene oxide monolayers. Chem. Mater. 2009, 21, 5674-5680.

17

Zhou, X. F.; Liu, Z. P. A scalable, solution-phase processing route to graphene oxide and graphene ultralarge sheets. Chem. Commun. 2010, 46, 2611–2613.

18

Pei, S. F.; Zhao, J. P.; Du, J. H.; Ren, W. C.; Cheng, H. M. Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids. Carbon 2010, 48, 4466–4474.

19

Su, Y.; Pei, S. F.; Du, J. H.; Liu, W. B.; Liu, C.; Cheng, H. M. Patterning flexible single-walled carbon nanotube thin films by an ozone gas exposure method. Carbon 2013, 53, 4-10.

20

Gao, W.; Alemany, L. B.; Ci, L. J.; Ajayan, P. M. New insights into the structure and reduction of graphite oxide. Nat. Chem. 2009, 1, 403-408.

21

Hossain, M. Z.; Johns, J. E.; Bevan, K. H.; Karmel, H. J.; Liang, Y. T.; Yoshimoto, S.; Mukai, K.; Koitaya, T.; Yoshinobu, J.; Kawai, M. et al. Chemically homogeneous and thermally reversible oxidation of epitaxial graphene. Nat. Chem. 2012, 4, 305–309.

22

Yang, D. X.; Velamakanni, A.; Bozoklu, G.; Park, S.; Stoller, M.; Piner, R. D.; Stankovich, S.; Jung, I.; Field, D. A.; Ventrice, C. A. et al. Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and micro-Raman spectroscopy. Carbon 2009, 47, 145–152.

23

Zhan, D.; Ni, Z. H.; Chen, W.; Sun, L.; Luo, Z. Q.; Lai, L. F.; Yu, T.; Wee, A. T. S.; Shen, Z. X. Electronic structure of graphite oxide and thermally reduced graphite oxide. Carbon 2011, 49, 1362-1366.

24

Lucchese, M. M.; Stavale, F.; Ferreira, E. H. M.; Vilani, C.; Moutinho, M. V. O.; Capaz, R. B.; Achete, C. A.; Jorio, A. Quantifying ion-induced defects and Raman relaxation length in graphene. Carbon 2010, 48, 1592-1597.

25

Pei, S. F.; Cheng, H. M. The reduction of graphene oxide. Carbon 2012, 50, 3210–3228.

26

Ferrari, A. C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107.

27

Kudin, K. N.; Ozbas, B.; Schniepp, H. C.; Prud'homme, R. K.; Aksay, I. A.; Car, R. Raman spectra of graphite oxide and functionalized graphene sheets. Nano Lett. 2008, 8, 36–41.

28

Marcano, D. C.; Kosynkin, D. V.; Berlin, J. M.; Sinitskii, A.; Sun, Z. Z.; Slesarev, A.; Alemany, L. B.; Lu, W.; Tour, J. M. Improved synthesis of graphene oxide. ACS Nano 2010, 4, 4806–4814.

29

Paredes, J. I.; Villar-Rodil, S.; Martínez-Alonso, A.; Tascón, J. M. D. Graphene oxide dispersions in organic solvents. Langmuir 2008, 24, 10560-10564.

30

Jeong, H. K.; Lee, Y. P.; Jin, M. H.; Kim, E. S.; Bae, J. J.; Lee, Y. H. Thermal stability of graphite oxide. Chem. Phys. Lett. 2009, 470, 255–258.

31

Strong, V.; Dubin, S.; EI-Kady, M. F.; Lech, A.; Wang, Y.; Weiller, B. H.; Kaner, R. B. Patterning and electronic tuning of laser scribed graphene for flexible all-carbon devices. ACS Nano 2012, 6, 1395-1403.

32

Moon, I. K.; Lee, J.; Ruoff, R. S.; Lee, H. Reduced graphene oxide by chemical graphitization. Nat. Commun. 2010, 1, 73.

33

Bagri, A.; Mattevi, C.; Acik, M.; Chabal, Y. J.; Chhowalla, M.; Shenoy, V. B. Structural evolution during the reduction of chemically derived graphene oxide. Nat. Chem. 2010, 2, 581–587.

34

Boukhvalov, D. W.; Katsnelson, M. I. Modeling of graphite oxide. J. Am. Chem. Soc. 2008, 130, 10697–10701.

35

Ganguly, A.; Sharma, S.; Papakonstantinou, P.; Hamilton, J. Probing the thermal deoxygenation of graphene oxide using high-resolution in situ X-ray-based spectroscopies. J. Phys. Chem. C 2011, 115, 17009-17019.

36

Jeong, H. K.; Yang, C.; Kim, B. S.; Kim, K. J. Valence band of graphite oxide. EPL 2010, 92, 37005.

37

Hsu, S. L.; Signorelli, A. J.; Pez, G. P.; Baughman, R. H. Highly conducting iodine derivatives of polyacetylene: Raman, XPS and X-ray diffraction studies. J. Chem. Phys. 1978, 69, 106–111.

38

Shin, H. J.; Kim, K. K.; Benayad, A.; Yoon, S. M.; Park, H. K.; Jung, I. S.; Jin, M. H.; Jeong, H. K.; Kim, J. M.; Choi, J. Y. et al. Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Funct. Mater. 2009, 19, 1987-1992.

39

Yu, W. J.; Lee, S. Y.; Chae, S. H.; Perello, D.; Han, G. H.; Yun, M.; Lee, Y. H. Small hysteresis nanocarbon-based integrated circuits on flexible and transparent plastic substrate. Nano Lett. 2011, 11, 1344–1350.

40

Okimoto, H.; Takenobu, T.; Yanagi, K.; Miyata, Y.; Shimotani, H.; Kataura, H.; Iwasa, Y. Tunable carbon nanotube thin-film transistors produced exclusively via inkjet printing. Adv. Mater. 2010, 22, 3981–3986.

41

Nobusa, Y.; Yomogida, Y.; Matsuzaki, S.; Yanagi, K.; Kataura, H.; Takenobu, T. Inkjet printing of single-walled carbon nanotube thin-film transistors patterned by surface modification. Appl. Phys. Lett. 2011, 99, 183106.

42

Takenobu, T.; Miura, N.; Lu, S. Y.; Okimoto, H.; Asano, T.; Shiraishi, M.; Iwasa, Y. Ink-jet printing of carbon nanotube thin-film transistors on flexible plastic substrates. Appl. Phys. Express 2009, 2. 025005.

43

Wöbkenberg, P. H.; Eda, G.; Leem, D. S.; de Mello, J. C.; Bradley, D. D. C.; Chhowalla, M.; Anthopoulos, T. D. Reduced graphene oxide electrodes for large area organic electronics. Adv. Mater. 2011, 23, 1558–1562.

44

Pang, S. P.; Tsao, H. N.; Feng, X. L.; Müllen, K. Patterned graphene electrodes from solution-processed graphite oxide films for organic field-effect transistors. Adv. Mater. 2009, 21, 3488–3491.

45

Yu, B.; Liu, C.; Hou, P. X.; Tian, Y.; Li, S. S.; Liu, B. L.; Li, F.; Kauppinen, E. I.; Cheng, H. M. Bulk synthesis of large diameter semiconducting single-walled carbon nanotubes by oxygen-assisted floating catalyst chemical vapor deposition. J. Am. Chem. Soc. 2011, 133, 5232-5235.

File
nr-6-11-842_ESM.pdf (639 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 14 June 2013
Revised: 07 August 2013
Accepted: 12 August 2013
Published: 04 September 2013
Issue date: November 2013

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Acknowledgements

Acknowledgements

The authors thank Mr. Wenshan Li for synthesis of s-SWCNTs and Mr. Wei Shen for the structure model. This work was supported by the National High-Tech Research and Development Program of China (No. 2012AA030303), the Chinese Academy of Sciences (No. KGZD-EW-303-3), the National Natural Science Foundation of China (No. 51221264) and the Graduate School of Chinese Academy of Sciences (Program of Innovation of Sciences and Technology for Graduate Students).

Return