Journal Home > Volume 6 , Issue 11

In the light of the current problems of silver nanoparticles (Ag NPs) in terms of antibacterial performance, we have designed a novel trimetallic core/shell nanostructure with AgPt alloy nanodots epitaxially grown on gold nanorods (Au@PtAg NRs) as a potential antibacterial agent. Both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were studied. The antibacterial activity exhibits an obvious composition-dependence. On increasing the Ag fraction in the alloy shell up to 80%, the antibacterial activity gradually increases, demonstrating a flexible way to tune this activity. At 80% Ag, the antibacterial activity is better than that of a pure Ag shell. The improved antibacterial ability mainly results from the high exposure of silver on the shell surface due to the dot morphology. We thus demonstrate that forming alloys is an effective way to improve antibacterial activity while retaining high chemical stability for Ag-based nanomaterials. Furthermore, due to the tunable localized surface plasmonic response in the near-infrared (NIR) spectral region, additional control over antibacterial activity using light—such as photothermal killing and photo-triggered silver ion release—is expected. As a demonstration, highly enhanced antibacterial activity is shown by utilizing the NIR photothermal effect of the nanostructures. Our results indicate that such tailored nanostructures will find a role in the future fight against bacteria, including the challenge of the increasing severity of multidrug resistance.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Gold nanorods core/AgPt alloy nanodots shell: A novel potent antibacterial nanostructure

Show Author's information Xiaona Hu1,3,§Yuyun Zhao2,§Zhijian Hu1Aditya Saran1,3Shuai Hou1,3Tao Wen1,3Wenqi Liu1,3Yinglu Ji1Xingyu Jiang2( )Xiaochun Wu1( )
CAS Key Laboratory of Standardization and Measurement for Nanotechnology National Center for Nanoscience and TechnologyBeijing 100190 China
CAS Key Laboratory for Biological Effects of Nanomaterials and Nanosafety National Center for Nanoscience and TechnologyBeijing 100190 China
University of Chinese Academy of Sciences Beijing 100049 China

§These two authors contributed equally to the work.

Abstract

In the light of the current problems of silver nanoparticles (Ag NPs) in terms of antibacterial performance, we have designed a novel trimetallic core/shell nanostructure with AgPt alloy nanodots epitaxially grown on gold nanorods (Au@PtAg NRs) as a potential antibacterial agent. Both Escherichia coli (E. coli) and Staphylococcus aureus (S. aureus) were studied. The antibacterial activity exhibits an obvious composition-dependence. On increasing the Ag fraction in the alloy shell up to 80%, the antibacterial activity gradually increases, demonstrating a flexible way to tune this activity. At 80% Ag, the antibacterial activity is better than that of a pure Ag shell. The improved antibacterial ability mainly results from the high exposure of silver on the shell surface due to the dot morphology. We thus demonstrate that forming alloys is an effective way to improve antibacterial activity while retaining high chemical stability for Ag-based nanomaterials. Furthermore, due to the tunable localized surface plasmonic response in the near-infrared (NIR) spectral region, additional control over antibacterial activity using light—such as photothermal killing and photo-triggered silver ion release—is expected. As a demonstration, highly enhanced antibacterial activity is shown by utilizing the NIR photothermal effect of the nanostructures. Our results indicate that such tailored nanostructures will find a role in the future fight against bacteria, including the challenge of the increasing severity of multidrug resistance.

Keywords: gold nanorods, photothermal effect, AgPt, antibacterial activities, composition-dependence

References(57)

1

Lin, J. J.; Lin, W. C.; Dong, R. X.; Hsu, S. H. The cellular responses and antibacterial activities of silver nanoparticles stabilized by different polymers. Nanotechnology 2012, 23, 065102.

2

Nederberg, F.; Zhang, Y.; Tan, J. P. K.; Xu, K. J.; Wang, H. Y.; Yang, C.; Gao, S. J.; Guo, X. D.; Fukushima, K.; Li, L. J.; Hedrick, J. L.; Yang, Y. Y. Biodegradable nanostructures with selective lysis of microbial membranes. Nat. Chem. 2011, 3, 409–414.

3

Rosemary, M. J.; MacLaren, I.; Pradeep, T. Investigations of the antibacterial properties of ciprofloxacin@SiO2. Langmuir 2006, 22, 10125–10129.

4

Rosi, N. L.; Giljohann, D. A.; Thaxton, C. S.; Lytton-Jean, A. K. R.; Han, M. S.; Mirkin, C. A. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 2006, 312, 1027–1030.

5

Bowman, M. C.; Ballard, T. E.; Ackerson, C. J.; Feldheim, D. L.; Margolis, D. M.; Melander, C. Inhibition of HIV fusion with multivalent gold nanoparticles. J. Am. Chem. Soc. 2008, 130, 6896–6897.

6

Gu, H. W.; Ho, P. L.; Tong, E.; Wang, L.; Xu, B. Presenting vancomycin on nanoparticles to enhance antimicrobial activities. Nano Lett. 2003, 3, 1261–1263.

7

Zhao, Y. Y.; Tian, Y.; Cui, Y.; Liu, W. W.; Ma, W. S.; Jiang, X. Y. Small molecule-capped gold nanoparticles as potent antibacterial agents that target gram-negative bacteria. J. Am. Chem. Soc. 2010, 132, 12349–12356.

8

Dal Lago, V.; de Oliveira, L. F.; Goncalves, K. D.; Kobarg, J.; Cardoso, M. B. Size-selective silver nanoparticles: Future of biomedical devices with enhanced bactericidal properties. J. Mater. Chem. 2011, 21, 12267–12273.

9

Abeylath, S. C.; Turos, E. Drug delivery approaches to overcome bacterial resistance to β-lactam antibiotics. Expert Opin. Drug Deliv. 2008, 5, 931–949.

10

Weir, E.; Lawlor, A.; Whelan, A.; Regan, F. The use of nanoparticles in anti-microbial materials and their characterization. Analyst 2008, 133, 835–845.

11

Valodkar, M.; Modi, S.; Pal, A.; Thakore, S. Synthesis and anti-bacterial activity of Cu, Ag and Cu–Ag alloy nanoparticles: A green approach. Mater. Res. Bull. 2011, 46, 384–389.

12

Kasuga, N. C.; Sekino, K.; Ishikawa, M.; Honda, A.; Yokoyama, M.; Nakano, S.; Shimada, N.; Koumo, C.; Nomiya, K. Synthesis, structural characterization and antimicrobial activities of 12 zinc(Ⅱ) complexes with four thiosemicarbazone and two semicarbazone ligands. J. Inorg. Biochem. 2003, 96, 298–310.

13

Wang, X.; Du, Y. M.; Liu, H. Preparation, characterization and antimicrobial activity of chitosan-Zn complex. Carbohydr. Polym. 2004, 56, 21–26.

14

Daoud, W. A.; Xin, J. H.; Zhang, Y. H. Surface functionalization of cellulose fibers with titanium dioxide nanoparticles and their combined bactericidal activities. Surf. Sci. 2005, 599, 69–75.

15

Alonso, A.; Vigués, N.; Muñoz-Berbel, X.; Macanás, J.; Muñoz, M.; Mas, J.; Muraviev, D. N. Environmentally-safe bimetallic Ag@Co magnetic nanocomposites with antimicrobial activity. Chem. Commun. 2011, 47, 10464–10466.

16

Santos, C. M.; Tria, M. C. R.; Vergara, R. A. M. V.; Ahmed, F.; Advincula, R. C.; Rodrigues, D. F. Antimicrobial graphene polymer (PVK-GO) nanocomposite films. Chem. Commun. 2011, 47, 8892–8894.

17

Shi, Q.; Vitchuli, N.; Nowak, J.; Noar, J.; Caldwell, J. M.; Breidt, F.; Bourham, M.; McCord, M.; Zhang, X. W. One-step synthesis of silver nanoparticle-filled nylon 6 nanofibers and their antibacterial properties. J. Mater. Chem. 2011, 21, 10330–10335.

18

Venkatpurwar, V.; Pokharkar, V. Green synthesis of silver nanoparticles using marine polysaccharide: Study of in-vitro antibacterial activity. Mater. Lett. 2011, 65, 999–1002.

19

Kang, S.; Pinault, M.; Pfefferle, L. D.; Elimelech, M. Single-walled carbon nanotubes exhibit strong antimicrobial activity. Langmuir 2007, 23, 8670–8673.

20

Lyon, D. Y.; Fortner, J. D.; Sayes, C. M.; Colvin, V. L.; Hughes, J. B. Bacterial cell association and antimicrobial activity of a C60 water suspension. Environ. Toxicol. Chem. 2005, 24, 2757–2762.

21

Lyon, D. Y.; Brunet, L.; Hinkal, G. W.; Wiesner, M. R.; Alvarez, P. J. J. Antibacterial activity of Fullerene water suspensions (nC60) is not due to ROS-mediated damage. Nano Lett. 2008, 8, 1539–1543.

22

Makarovsky, I.; Boguslavsky, Y.; Alesker, M.; Lellouche, J.; Banin, E.; Lellouche, J. P. Novel triclosan-bound hybrid-silica nanoparticles and their enhanced antimicrobial properties. Adv. Funct. Mater. 2011, 21, 4295–4304.

23

Lv, M.; Su, S.; He, Y.; Huang, Q.; Hu, W. B.; Li, D.; Fan, C. H.; Lee, S. T. Long-term antimicrobial effect of silicon nanowires decorated with silver nanoparticles. Adv. Mater. 2010, 22, 5463–5467.

24

Marambio-Jones, C.; Hoek, E. M. V. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J. Nanopart. Res. 2010, 12, 1531–1551.

25

Rai, M.; Yadav, A.; Gade, A. Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv. 2009, 27, 76–83.

26

Kim, J. S.; Kuk, E.; Yu, K. N.; Kim, J. H.; Park, S. J.; Lee, H. J.; Kim, S. H.; Park, Y. K.; Park, Y. H.; Hwang, C. Y. et al. Antimicrobial effects of silver nanoparticles. Nanomed. - Nanotechnol. Biol. Med. 2007, 3, 95–101.

27

Choi, O.; Hu, Z. Q. Size dependent and reactive oxygen species related nanosilver toxicity to nitrifying bacteria. Environ. Sci. Technol. 2008, 42, 4583–4588.

28

He, W. W.; Zhou, Y. T.; Wamer, W. G.; Boudreau, M. D.; Yin, J. J. Mechanisms of the pH dependent generation of hydroxyl radicals and oxygen induced by Ag nanoparticles. Biomaterials 2012, 33, 7547–7555.

29

Choi, O.; Deng, K. K.; Kim, N. J.; Rose, L.; Surampalli, R. Y.; Hu, Z. Q. The inhibitory effects of silver nanoparticles, silver ions, and silver chloride colloids on microbial growth. Water Res. 2008, 42, 3066–3074.

30

Cowan, M. M.; Abshire, K. Z.; Houk, S. L.; Evans, S. M. Antimicrobial efficacy of a silver-zeolite matrix coating on stainless steel. J. Ind. Microbiol. Biotechnol. 2003, 30, 102–106.

31

Lesniak, W.; Bielinska, A. U.; Sun, K.; Janczak, K. W.; Shi, X. Y.; Baker, J. R.; Balogh, L. P. Silver/dendrimer nanocomposites as biomarkers: Fabrication, characterization, in vitro toxicity, and intracellular detection. Nano Lett. 2005, 5, 2123–2130.

32

Sambhy, V.; MacBride, M. M.; Peterson, B. R.; Sen, A. Silver bromide nanoparticle/polymer composites: Dual action tunable antimicrobial materials. J. Am. Chem. Soc. 2006, 128, 9798–9808.

33

Zhang, Y. W.; Peng, H. S.; Huang, W.; Zhou, Y. F.; Yan, D. Y. Facile preparation and characterization of highly antimicrobial colloid Ag or Au nanoparticles. J. Colloid Interface Sci. 2008, 325, 371–376.

34

Panáček, A.; Kvítek, L.; Prucek, R.; Kolář, M.; Večeřová, R.; Pizúrová, N.; Sharma, V. K.; Nevěčná, T.; Zbořil, R. Silver colloid nanoparticles: Synthesis, characterization, and their antibacterial activity. J. Phys. Chem. B 2006, 110, 16248–16253.

35

Elechiguerra, J. L.; Burt, J. L.; Morones, J. R.; Camacho-Bragado, A.; Gao, X. X.; Lara, H. H.; Yacaman, M. J. Interaction of silver nanoparticles with HIV-I. J. Nanobiotechnol. 2005, 3, 6.

36

Morones, J. R.; Elechiguerra, J. L.; Camacho, A.; Holt, K.; Kouri, J. B.; Ramírez, J. T.; Yacaman, M. J. The bactericidal effect of silver nanoparticles. Nanotechnology 2005, 16, 2346–2353.

37

Martínez-Castañón, G. A.; Niño-Martínez, N.; Martínez-Gutierrez, F.; Martínez-Mendoza, J. R.; Ruiz, F. Synthesis and antibacterial activity of silver nanoparticles with different sizes. J. Nanopart. Res. 2008, 10, 1343–1348.

38

Pal, S.; Tak, Y. K.; Song, J. M. Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl. Environ. Microbiol. 2007, 73, 1712–1720.

39

Pal, S.; Yoon, E. J.; Tak, Y. K.; Choi, E. C.; Song, J. M. Synthesis of highly antibacterial nanocrystalline trivalent silver polydiguanide. J. Am. Chem. Soc. 2009, 131, 16147–16155.

40

AshaRani, P. V.; Mun, G. L. K.; Hande, M. P.; Valiyaveettil, S. Cytotoxicity and genotoxicity of silver nanoparticles in human cells. ACS Nano 2009, 3, 279–290.

41

Sondi, I.; Salopek-Sondi, B. Silver nanoparticles as antimicrobial agent: A case study on E. coli as a model for gram-negative bacteria. J. Colloid Interface Sci. 2004, 275, 177–182.

42

Danilczuk, M.; Lund, A.; Sadlo, J.; Yamada, H.; Michalik, J. Conduction electron spin resonance of small silver particles. Spectroc. Acta Pt. A-Molec. Biomolec. Spectr. 2006, 63, 189–191.

43

Lok, C. N.; Ho, C. M.; Chen, R.; He, Q. Y.; Yu, W. Y.; Sun, H.; Tam, P. K. H.; Chiu, J. F.; Che, C. M. Silver nanoparticles: Partial oxidation and antibacterial activities. J. Biol. Inorg. Chem. 2007, 12, 527–534.

44

Lara, H. H.; Ayala-Núñez, N. V.; Turrent, L. D. I.; Padilla, C. R. Bactericidal effect of silver nanoparticles against multidrug-resistant bacteria. World J. Microbiol. Biotechnol. 2010, 26, 615–621.

45

Rai, M. K.; Deshmukh, S. D.; Ingle, A. P.; Gade, A. K. Silver nanoparticles: The powerful nanoweapon against multidrug-resistant bacteria. J. Appl. Microbiol. 2012, 112, 841–852.

46

Li, T.; Albee, B.; Alemayehu, M.; Diaz, R.; Ingham, L.; Kamal, S.; Rodriguez, M.; Bishnoi, S. W. Comparative toxicity study of Ag, Au, and Ag–Au bimetallic nanoparticles on Daphnia magna. Anal. Bioanal. Chem. 2010, 398, 689–700.

47

Norman, R. S.; Stone, J. W.; Gole, A.; Murphy, C. J.; Sado-Attwood, T. L. Targeted photothermal lysis of the pathogenic bacteria, pseudomonas aeruginosa, with gold nanorods. Nano Lett. 2008, 8, 302–306.

48

He, W. W.; Wu, X. C.; Liu, J. B.; Zhang, K.; Chu, W. G.; Feng, L. L.; Hu, X. N.; Zhou, W. Y.; Xie, S. S. Pt-guided formation of Pt–Ag nanoislands on Au nanorods and improved methanol electro-oxidation. J. Phys. Chem. C 2009, 113, 10505–10510.

49

Hu, X. N.; Saran, A.; Hou, S.; Wen, T.; Ji, Y. L.; Liu, W. Q.; Zhang, H.; He, W. W.; Yin, J. J.; Wu, X. C. Au@PtAg core/shell nanorods: Tailoring enzyme-like activities via alloying. RSC Adv. 2013, 3, 6095–6105.

50

Khanal, B. P.; Zubarev, E. R. Polymer-functionalized platinum-on-gold bimetallic nanorods. Angew. Chem. Int. Ed. 2009, 48, 6888–6891.

51

Chen, H. J.; Wang, F.; Li, K.; Woo, K. C.; Wang, J. F.; Li, Q.; Sun, L. D.; Zhang, X. X.; Lin, H. Q.; Yan, C. H. Plasmonic percolation: Plasmon-manifested dielectric-to-metal transition. ACS Nano, 2012, 6, 7162–7171.

52

Shockman, G. D.; Barrett, J. F. Structure, function, and assembly of cell walls of gram-positive bacteria. Annu. Rev. Microbiol. 1983, 37, 501–527.

53

Alt, V.; Bechert, T.; Steinrücke, P.; Wagener, M.; Seidel, P.; Dingeldein, E.; Domann, E.; Schnettler, R. An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 2004, 25, 4383–4391.

54

Travan, A.; Pelillo, C.; Donati, I.; Marsich, E.; Benincasa, M.; Scarpa, T.; Semeraro, S.; Turco, G.; Gennaro, R.; Paoletti, S. Non-cytotoxic silver nanoparticle-polysaccharide nanocomposites with antimicrobial activity. Biomacromolecules 2009, 10, 1429–1435.

55

Dias, H. V. R.; Batdorf, K. H.; Fiachini, M.; Diyabalanage, H. V. K.; Carnahan, S.; Mulcahy, R.; Rabiee, A.; Nelson, K.; van Waasbergen, L. G. Antimicrobial properties of highly fluorinated silver (Ⅰ) tris(pyrazolyl) borates. J. Inorg. Biochem. 2006, 100, 158–160.

56

Cho, K. H.; Park, J. E.; Osaka, T.; Park, S. G. The study of antimicrobial activity of preservative effects of nanosilver ingredient. Electrochim. Acta 2005, 51, 956–960.

57

Kvítek, L.; Panáček, A.; Soukupová, J.; Kolář, M.; Večeřová, R.; Prucek, R.; Holecová, M.; Zbořil, R. Effect of surfactants and polymers on stability and antibacterial activity of silver nanoparticles (NPs). J. Phys. Chem. C 2008, 112, 5825–5834.

File
nr-6-11-822_ESM.pdf (1 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 05 June 2013
Revised: 04 August 2013
Accepted: 08 August 2013
Published: 04 September 2013
Issue date: November 2013

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Acknowledgements

Acknowledgements

The authors appreciate financial support from the National Natural Science Foundation of China (Grant Nos. 21173056, 21105018, and 21025520), the National Key Basic Research Program of China (Nos. 2012CB934001 and 2011CB932802) and the Chinese Academy of Sciences (No. KJCX2-YW-M15).

Return