Journal Home > Volume 6 , Issue 11

The coupling of upconversion nanophosphors (UCNPs) with the surface plasmonic resonance (SPR) of noble metals is a promising way to improve luminescent efficiency of UCNPs; however, it is still a challenge to achieve stable, reproducible and effective upconversion luminescence (UCL) enhancement through such coupling. In this work, we present a novel strategy to improve UCL of NaYF4: Yb3+, Er3+ UCNPs, by combining the near-field coupling of SPR of silver and the far-field coupling of poly(methyl methacrylate) (PMMA) opal photonic crystals (OPCs) with the UCNPs. In order to control the effective interaction distance between the UCNPs and the SPR, a porous silver film consisting of randomly distributed silver nanoparticles (NPs) (> 100 nm) was prepared which demonstrated strong SPR over a broad wavelength range, and its coupling to the UCNPs was found to be much stronger than that of a dense film. In the far-field coupling of OPCs, the photonic stop band (PSB) of the PMMA OPCs was tuned to 980 nm, matching exactly the excitation light. By modulating the particle size of the UCNPs, and the direction and excitation power of the incident light, a maximum enhancement of 60-fold was observed, which is an important advance for metal-induced UCL enhancement systems.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A novel strategy for improving upconversion luminescence of NaYF4: Yb, Er nanocrystals by coupling with hybrids of silver plasmon nanostructures and poly(methyl methacrylate) photonic crystals

Show Author's information Wen Xu1Yongsheng Zhu2Xu Chen1Jing Wang1Li Tao1Sai Xu1Tong Liu1Hongwei Song1( )
State Key Laboratory on Integrated Optoelectronics College of Electronic Science and EngineeringJilin University 2699 Qianjin Street Changchun 130012 China
College of Physics Jilin University 2699 Qianjin Street Changchun 130012 China

Abstract

The coupling of upconversion nanophosphors (UCNPs) with the surface plasmonic resonance (SPR) of noble metals is a promising way to improve luminescent efficiency of UCNPs; however, it is still a challenge to achieve stable, reproducible and effective upconversion luminescence (UCL) enhancement through such coupling. In this work, we present a novel strategy to improve UCL of NaYF4: Yb3+, Er3+ UCNPs, by combining the near-field coupling of SPR of silver and the far-field coupling of poly(methyl methacrylate) (PMMA) opal photonic crystals (OPCs) with the UCNPs. In order to control the effective interaction distance between the UCNPs and the SPR, a porous silver film consisting of randomly distributed silver nanoparticles (NPs) (> 100 nm) was prepared which demonstrated strong SPR over a broad wavelength range, and its coupling to the UCNPs was found to be much stronger than that of a dense film. In the far-field coupling of OPCs, the photonic stop band (PSB) of the PMMA OPCs was tuned to 980 nm, matching exactly the excitation light. By modulating the particle size of the UCNPs, and the direction and excitation power of the incident light, a maximum enhancement of 60-fold was observed, which is an important advance for metal-induced UCL enhancement systems.

Keywords: upconversion, porous Ag film, near-field coupling, opal photonic crystals (OPCs), far-field coupling

References(42)

1

Auzel, F. Upconversion and anti-stokes processes with f and d ions in solids. Chem. Rev. 2004, 104, 139–174.

2

Danger, T.; Koetke, J.; Brede, R.; Heumann, E.; Huber, G.; Chai, B. H. T. Spectroscopy and green upconversion laser emission of Er3+-doped crystals at room temperature. J. Appl. Phys. 1994, 76, 1413–1422.

3

Huang, X. Y.; Han, S. Y.; Huang, W.; Liu, X. G. Enhancing solar cell effciency: The search for luminescent materials as spectral converters. Chem. Soc. Rev. 2013, 42, 173–201.

4

Su, L. T.; Karuturi, S. K.; Luo, J. S.; Liu, L. J.; Liu, X. F.; Guo, J.; Sum, T. C.; Deng, R. R.; Fan, H. J.; Liu, X. G. et al. Photon upconversion in hetero-nanostructured photoanodes for enhanced near-infrared light harvesting. Adv. Mater. 2013, 25, 1603–1607.

5

Aarts, L.; van der Ende, B. M.; Meijerink, A. Downconversion for solar cells in NaYF4: Er, Yb. J. Appl. Phys. 2009, 106, 023522.

6

Yu, X. F.; Li, Min.; Xie, M. Y.; Chen, L. D.; Li, Y.; Wang, Q. Q. Dopant-controlled synthesis of water- soluble hexagonal NaYF4 nanorods with efficient upconversion fluorescence for multicolor bioimaging. Nano Res. 2010, 3, 51–60.

7

Tu, D.; Liu, L. Q.; Ju, Q.; Liu, Y. S.; Zhu, H. M.; Li, R. F.; Chen, X. Y. Time-resolved FRET biosensor based on amine-functionalized lanthanide-doped NaYF4 nanocrystals. Angew. Chem. Int. Ed. 2011, 50, 6306–6310.

8

Esterowitz, L.; Noonan, J.; Bahler. J. Erratum: Enhancement in a Ho3+-Yb3+ quantum counter by energy transfer. Appl. Phys. Lett. 1967, 11, 72.

9

Rapaport, A.; Milliez, J.; Bass, M.; Cassanho, A.; Jenssen, J. Review of the properties of up-conversion phosphors for new emissive displays. J. Disp. Technol. 2006, 2, 68–78.

10

Boyer, J. C.; van Veggel, F. C. J. M. Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles. Nanoscale 2010, 2, 1417–1419.

11

Yang, T. S.; Sun, Y.; Liu, Q.; Feng, W.; Yang, P. Y.; Li, F. Y. Cubic sub-20 nm NaLuF4-based upconversion nanophosphors for high-contrast bioimaging in different animal species. Biomaterials 2012, 33, 3733–3742.

12

Yi, G. S.; Chow, G. M. Water-soluble NaYF4: Yb, Er(Tm)/ NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence. Chem. Mater. 2007, 19, 341–343.

13

Wang, F.; Deng, R. R.; Wang, J.; Wang, Q. X.; Han, Y.; Zhu, H. M.; Chen, X. Y.; Liu, X. G. Tuning upconversion through energy migration in core–shell nanoparticles. Nat. Mater. 2011, 10, 968–973.

14

Ming, T.; Chen, H. J.; Jiang, R. B.; Li, Q.; Wang, J. F. Plasmon-controlled fluorescence: Beyond the intensity enhancement. J. Phys. Chem. Lett. 2012, 3, 191−202.

15

Viste, P.; Plain, J.; Jaffol, R.; Vial, A.; Adam, P. M.; Royer, P. Enhancement and quenching regimes in metal-semiconductor hybrid optical nanosources. ACS nano 2010, 4, 759–764.

16

Bharill, S.; Chen, C. L.; Stevens, B.; Kaur, J.; Smilansky, Z.; Mandecki, W.; Gryczynski, I.; Gryczynski, Z.; Cooperman, B. S.; Goldman, Y. E. Enhancement of single-molecule fluorescence signals by colloidal silver nanoparticles in studies of protein translation. ACS nano 2011, 5, 399–407.

17

Schietinger, S.; Aichele, T.; Wang, H. Q.; Nann, T.; Benson, O. Plasmon-enhanced upconversion in single NaYF4: Yb3+/Er3+ codoped nanocrystals. Nano Lett 2010, 10, 134–138.

18

Zhang, F.; Braun, G. B.; Shi, Y. F.; Zhang, Y. C.; Sun, X. H.; Reich, N. O.; Zhao, D. Y.; Stucky, G. Fabrication of Ag@SiO2@Y2O3: Er nanostructures for bioimaging: Tuning of the upconversion fluorescence with silver nanoparticles. J. Am. Chem. Soc. 2010, 132, 2850–2851.

19

Zhang, H.; Li, Y. J.; Ivanov, I. A.; Qu, Y. Q.; Huang, Y.; Duan, X. F. Plasmonic modulation of the upconversion fluorescence in NaYF4: Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells. Angew. Chem. Int. Ed. 2010, 49, 2865–2868.

20

Liu, N.; Qin, W. P.; Qin, G. S.; Jiang, T.; Zhao, D. Highly plasmon-enhanced upconversion emissions from Au@β-NaYF4: Yb, Tm hybrid nanostructures. Chem. Commun. 2011, 47, 7671–7673.

21

Priyam, A.; Idris, N. M.; Zhang, Y. Gold nanoshell coated NaYF4 nanoparticles for simultaneously enhanced upconversion fuorescence and darkfeld imaging. J. Mater. Chem. 2012, 22, 960–965.

22

Zhang, W. H.; Ding, F.; Chou, S. Y. Large enhancement of upconversion luminescence of NaYF4: Yb3+/Er3+ nanocrystal by 3D plasmonic nano-antennas. Adv. Mater. 2012, 24, OP236–OP241.

23

Saboktakin, M.; Ye, X. C.; Oh, S. J.; Hong, S. H.; Fafarman, A. T.; Chettiar, U. K.; Engheta, N.; Murray, C. B.; Kagan, C. R. Metal-enhanced upconversion luminescence tunable through metal nanoparticle-nanophosphor separation. ACS nano 2012, 6, 8758–8766.

24

Fujii, M.; Nakano, T.; Imakita, K.; Hayashi, S. Upconversion luminescence of Er and Yb codoped NaYF4 nanoparticles with metal shells. J. Phys. Chem. C 2013, 117, 1113−1120.

25

Paudel, H. P.; Zhong, L. L.; Bayat, K.; Baroughi, M. F.; Smith, S.; Lin, C. K.; Jiang, C. Y.; Berry, M. T.; May, P. S. Enhancement of near-infrared-to-visible upconversion luminescence using engineered plasmonic gold surfaces. J. Phys. Chem. C 2011, 115, 19028–19036.

26

Xu, W.; Xu, S.; Zhu, Y. S.; Liu, T.; Bai, X.; Dong, B.; Xu, L.; Song, H. W. Ultra-broad plasma resonance enhanced multicolor emissions in an assembled Ag/NaYF4: Yb, Er nano-flm. Nanoscale 2012, 4, 6971–6973.

27

Evanoff Jr, D. D.; Chumanov, G. Synthesis and optical properties of silver nanoparticles and arrays. ChemPhysChem 2005, 6, 1221–1231.

28

Ogawa, S.; Imada, M.; Yoshimoto, S.; Okano, M.; Noda, S. Control of light emission by 3D photonic crystals. Science 2004, 305, 227–229.

29

Joannopoulos, J. D.; Johnson, S. G.; Winn, J. N.; Meade, R. D. Photonic Crystals Molding the Flow of Light; Princeton University Press: Princeton, 2008.

30

Wang, W.; Song, H. W.; Bai, X.; Liu, Q.; Zhu, Y. S. Modified spontaneous emissions of europium complex in weak PMMA opals. Phys. Chem. Chem. Phys. 2011, 13, 18023–18030.

31

Tao, C. A.; Zhu, W.; An, Q.; Yang, H. W.; Li, W. N.; Lin, C. X.; Yang, F. Z.; Li, G. T. Coupling of nanoparticle plasmons with colloidal photonic crystals as a new strategy to efficiently enhance fluorescence. J. Phys. Chem. C 2011, 115, 20053–20060.

32

Li, Z. Q.; Wang, L. M.; Wang, Z. Y.; Liu, X. H.; Xiong, Y. J. Modification of NaYF4: Yb, Er@SiO2 nanoparticles with gold nanocrystals for tunable green-to-red upconversion emissions. J. Phys. Chem. C 2011, 115, 3291–3296.

33

Wu, Y.; Shen, X.; Dai, S. X.; Xu, Y. S.; Chen, F. F.; Lin, C. G.; Xu, T. F.; Nie, Q. H. Silver nanoparticles enhanced upconversion luminescence in Er3+/Yb3+ codoped bismuth-germanate glasses. J. Phys. Chem. C 2011, 115, 25040–25045.

34

Li, Z. Q.; Zhang, Y. An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF4: Yb, Er/Tm nanocrystals with controllable shape and upconversion fluorescence. Nanotechnology 2008, 19, 345606.

35

Wiley, B.; Sun, Y. G.; Xia, Y. N. Synthesis of silver nanostructures with controlled shapes and properties. Acc. Chem. Res. 2007, 40, 1067–1076.

36

Kinnan, M. K.; Chumanov, G. Plasmon coupling in two-dimensional arrays of silver nanoparticles: Ⅱ. effect of the particle size and interparticle distance. J. Phys. Chem. C 2010, 114, 7496–7501.

37

Wang, Y.; Tu, L. P.; Zhao, J. W.; Sun, Y. J.; Kong, X. G.; Zhang, H. Upconversion luminescence of β-NaYF4: Yb3+, Er3+@β-NaYF4 core/shell nanoparticles: Excitation power density and surface dependence. J. Phys. Chem. C 2009, 113, 7164–7169.

38

Li, D.; Dong, B.; Bai, X.; Wang, Y.; Song, H. W. Infuence of the TGA modifcation on upconversion luminescence of hexagonal-phase NaYF4: Yb3+, Er3+ nanoparticles. J. Phys. Chem. C 2010, 114, 8219–8226.

39

Bai, X.; Song, H. W.; Pan, G. H.; Lei, Y. Q.; Wang, T.; Ren, X. G.; Lu, S. Z.; Dong, B.; Dai, Q. L.; Fan, L. B. Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline Yttria: Saturation and thermal effects. J. Phys. Chem. C 2007, 111, 13611–13617.

40

Pollnau, M.; Gamelin, D. R.; Luthi, S. R.; Gudel, H. U. Power dependence of upconversion luminescence in lanthanide and transition-metal-ion systems. Phys. Rev. B 2000, 61, 3337–3346.

41

Dai, Q. L.; Song, H. W.; Ren, X. G.; Lu, S. Z.; Pan, G. H.; Bai, X.; Dong, B.; Qin, R. F.; Qu, X. S.; Zhang, H. Structure and upconversion luminescence of hydrothermal PbWO4: Er3+, Yb3+ powders. J. Phys. Chem. C 2008, 112, 19694–19698.

42

Fischer, J.; Bocchio, N.; Unger, A.; Butt, H. J.; Koynov, K.; Kreiter, M. Near-field-mediated enhancement of two-photon-induced fluorescence on plasmonic nanostructures. J. Phys. Chem. C 2010, 114, 20968–20973.

File
nr-6-11-795_ESM.pdf (422.6 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 30 May 2013
Revised: 29 July 2013
Accepted: 30 July 2013
Published: 27 August 2013
Issue date: November 2013

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Acknowledgements

Acknowledgements

This work was supported by the National Talent Youth Science Foundation of China (Grant No. 60925018), the National Natural Science Foundation of China (Grant Nos. 61204015, 51002062, 11174111, 61177042, and 81201738) and the China Postdoctoral Science Foundation Funded Project (No. 2012M511337).

Return