Journal Home > Volume 6 , Issue 9

A non-destructive, safe and practical strategy to produce high quality graphene in high yield is urgently required, since this would pave the way for a wide range of applications of graphene in the future. Here we present a pH-responsive water-dispersible method for the exfoliation and functionalization of graphene by using lysozyme. The pH-responsive dispersion of graphene may be useful for the reversible assembly of multicomponent/multifunctional nanohybrid materials and nanoscale electronic devices. More importantly, composites can be easily constructed through the interactions between disulphide groups in lysozyme and gold nanoparticles (AuNPs). The resulting graphene-AuNPs composites show excellent catalytic activity towards reduction of o-nitroaniline by NaBH4. Since lysozyme is low cost and has antibacterial properties, and has been widely used in food preservation, medicine and the pharmaceutical industry, our approach may open a new scalable route for the manufacture of high-quality, nondestructive graphene for practical applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Enzyme-directed pH-responsive exfoliation and dispersion of graphene and its decoration by gold nanoparticles for use as a hybrid catalyst

Show Author's information Konggang QuLi WuJinsong RenXiaogang Qu( )
Laboratory of Chemical BiologyDivision of Biological Inorganic ChemistryState Key Laboratory of Rare Earth Resource UtilizationChangchun Institute of Applied ChemistryGraduate School of the Chinese Academy of SciencesChinese Academy of SciencesChangchunJilin130022China

Abstract

A non-destructive, safe and practical strategy to produce high quality graphene in high yield is urgently required, since this would pave the way for a wide range of applications of graphene in the future. Here we present a pH-responsive water-dispersible method for the exfoliation and functionalization of graphene by using lysozyme. The pH-responsive dispersion of graphene may be useful for the reversible assembly of multicomponent/multifunctional nanohybrid materials and nanoscale electronic devices. More importantly, composites can be easily constructed through the interactions between disulphide groups in lysozyme and gold nanoparticles (AuNPs). The resulting graphene-AuNPs composites show excellent catalytic activity towards reduction of o-nitroaniline by NaBH4. Since lysozyme is low cost and has antibacterial properties, and has been widely used in food preservation, medicine and the pharmaceutical industry, our approach may open a new scalable route for the manufacture of high-quality, nondestructive graphene for practical applications.

Keywords: catalysis, exfoliation, pH-responsive, Grapheme, protein, lysozyme

References(33)

1

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183-191.

2

Ma, X. X.; Tao, H. Q.; Yang, K.; Feng, L. Z.; Cheng, L.; Shi, X. Z.; Li, Y. G.; Guo, L.; Liu, Z. A functionalized graphene graphene oxide-iron oxide nanocomposite for magnetically targeted drug delivery, photothermal therapy, and magnetic resonance imaging. Nano Res. 2012, 5, 199-212.

3

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.

4

Berger, C.; Song, Z. M.; Li, X. B.; Wu, X. S.; Brown, N.; Naud, C.; Mayou, D.; Li, T. B.; Hass, J.; Marchenkov, A. N.; et al. Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312, 1191-1196.

5

Ruoff, R. Graphene: Calling all chemists. Nat. Nanotechnol. 2008, 3, 10-11.

6

Chakraborty, S.; Guo, W. H.; Hauge, R. H.; Billups, W. E. Reductive alkylation of fluorinated graphite. Chem. Mater. 2008, 20, 3134-3136.

7

Schniepp, H. C.; Li, J. L.; McAllister, M. J.; Sai, H.; Herrera-Alonso, M.; Adamson, D. H.; Prud'homme, R. K.; Car, R.; Saville, D. A.; Aksay, I. A. Functionalized single graphene sheets derived from splitting graphite oxide. J. Phys. Chem. B 2006, 110, 8535-8539.

8

Lomeda, J. R.; Doyle, C. D.; Kosynkin, D. V.; Hwang, W. F.; Tour, J. M. Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J. Am. Chem. Soc. 2008, 130, 16201-16206.

9

Qian, W.; Hao, R.; Hou, Y. L.; Tian, Y.; Shen, C. M.; Gao, H. J.; Liang, X. L. Solvothermal-assisted exfoliation process to produce graphene with high yield and high quality. Nano Res. 2009, 2, 706-712.

10

Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y.; Wu, Y.; Nguyen, S. B. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558-1565.

11

Lotya, M.; Hernandez, Y.; King, P. J.; Smith, R. J.; Nicolosi, V.; Karlsson, L. S.; Blighe, F. M.; De, S.; Wang, Z. M.; McGovern, I. T.; et al. Liquid phase production of graphene by exfoliation of graphite in surfactant water solutions. J. Am. Chem. Soc. 2009, 131, 3611-3620.

12

Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339.

13

Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008, 3, 270-274.

14

Bourlinos, A. B.; Georgakilas, V.; Zboril, R.; Steriotis, T. A.; Stubos, A. K. Liquid-phase exfoliation of graphite towards solubilized graphenes. Small 2009, 5, 1841-1845.

15

Hernandez, Y.; Nicolosi, V.; Lotya, M.; Blighe, F. M.; Sun, Z. Y.; De, S.; McGovern, I. T.; Holland, B.; Byrne, M.; Gun'ko, Y. K.; et al. High-yield production of graphene by liquid-phase exfoliation of graphite. Nat. Nanotechnol. 2008, 3, 563-568.

16

Hamilton, C. E.; Lomeda, J. R.; Sun, Z. Z.; Tour, J. M.; Barron, A. R. High-yield organic dispersions of unfunctionalized graphene. Nano Lett. 2009, 9, 3460-3462.

17

Janowska, I.; Chizari, K.; Ersen, O.; Zafeiratos, S.; Soubane, D.; Da Costa, V.; Speisser, V.; Boeglin, C.; Houllé, M.; Bégin, D.; et al. Microwave synthesis of large few-layer graphene sheets in aqueous solution of ammonia. Nano Res. 2010, 3, 126-137.

18

Lotya, M.; King, P. J.; Khan, U.; De S.; Coleman, J. N. High-concentration, surfactant-stabilized graphene dispersions. ACS Nano 2010, 4, 3155-3162.

19

De, S.; King, P. J.; Lotya, M.; O'Neill, A.; Doherty, E. M.; Hernandez, Y.; Duesberg, G. S.; Coleman, J. N. Flexible, transparent, conducting films of randomly stacked graphene from surfactant-stabilized, oxide-free graphene dispersions. Small 2010, 6, 458-464.

20

Behabtu, N.; Lomeda, J. R.; Green, M. J.; Higginbotham, A. L.; Sinitskii, A.; Kosynkin, D. V.; Tsentalovich, D.; Parra-Vasquez, A. N. G.; Schmidt, J.; Kesselman, E.; et al. Spontaneous high-concentration dispersions and liquid crystals of graphene. Nat. Nanotechnol. 2010, 5, 406-411.

21

Zhang, D. D.; Fu, L.; Liao, L.; Liu, N.; Dai, B. Y.; Zhang, C. X. Preparation, characterization, and application of electrochemically functional graphene nanocomposites by one-step liquid-phase exfoliation of natural flake graphite with methylene blue. Nano Res. 2012, 5, 875-887.

22

Barone, P. W.; Baik, S.; Heller, D. A.; Strano, M. S. Near-infrared optical sensors based on single-walled carbon nanotubes. Nat. Mater. 2005, 4, 86-92.

23

Graff, R. A.; Swanson, J. P.; Barone, P. W.; Baik, S.; Heller, D. A.; Strano, M. S. Achieving individual-nanotube dispersion at high loading in single-walled carbon nanotube composites. Adv. Mater. 2005, 17, 980-984.

24

Nepal, D.; Geckeler, K. E. pH-sensitive dispersion and debundling of single-walled carbon nanotubes: Lysozyme as a tool. Small 2006, 2, 406-412.

25

Blake, C. C. F.; Koenig, D. F.; Mair, G. A.; North, A. C. T.; Phillips, D. C.; Sarma, V. R. Structure of hen egg-white lysozyme: A three-dimensional Fourier synthesis at 2Å resolution. Nature 1965, 206, 757-761.

26

Laaksonen, P.; Kainlauri, M.; Laaksonen, T.; Shchepetov, A.; Jiang, H.; Ahopelto, J.; Linder, M. B. Interfacial engineering by proteins—Exfoliation and functionalization of graphene by hydrophobins. Angew. Chem. Int. Ed. 2010, 49, 4946-4949.

27

Yang, J.; Lee, J. Y.; Too, H. P.; Chow, G. M.; Gan. L. M. Single stranded DNA stabilization and assembly of Au nanoparticles of different sizes. Chem. Phys. 2006, 323, 304-312.

28

Qu, K. G.; Wu, L.; Ren, J. S.; Qu. X. G. Natural DNA-modified graphene/Pd nanoparticles as highly active catalyst for formic acid electro-oxidation and for the Suzuki reaction. ACS Appl. Mater. Interfaces 2012, 4, 5001-5009.

29

Zhao, C.; Qu, K. G.; Song, Y. J.; Ren, J. S.; Qu. X. G. A universal, label-free, and sensitive optical enzyme-sensing system for nuclease and methyltransferase activity based on light scattering of carbon nanotubes. Adv. Funct. Mater. 2011, 21, 583-590.

30

Qu, K. G.; Ren, J. S.; Qu. X. G. pH-responsive, DNA-directed reversible assembly of graphene oxide. Mol. BioSyst. 2011, 7, 2681-2687.

31

Juárez, J.; Cambón, A.; Goy-López, S.; Topete, A.; Taboada, P.; Mosquera. V. Obtention of metallic nanowires by protein biotemplating and their catalytic application. J. Phys. Chem. Lett. 2010, 1, 2680-2687.

32

Zhu, C. H.; Hai, Z. B.; Cui, C. H.; Li, H. H.; Chen, J. F.; Yu. S. H. In situ controlled synthesis of thermosensitive poly(N-isopropylacrylamide)/Au nanocomposite hydrogels by gamma radiation for catalytic application. Small 2012, 8, 930-936.

33

Katsukis, G.; Malig, J.; Schulz-Drost, C.; Leubner, S.; Jux, N.; Guldi, D. M. Toward combining graphene and QDs assembling CdTe QDs to exfoliated graphite and nanographene in water. ACS Nano 2012, 6, 1915-1924.

File
nr-6-9-693_ESM.pdf (397.6 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 06 May 2013
Revised: 20 June 2013
Accepted: 29 June 2013
Published: 09 July 2013
Issue date: September 2013

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Acknowledgements

Acknowledgements

Financial support was provided by the National Basic Research Program (973 Program) of China (Nos. 2011CB936004 and 2012CB720602), and the National Natural Science Foundation of China (NSFC), Nos. (21210002 and 91213302).

Return