Journal Home > Volume 6 , Issue 9

Since the high-voltage spinel LiNi0.5Mn1.5O4 (LNMO) is one of the most attractive cathode materials for lithium-ion batteries, how to improve the cycling and rate performance simultaneously has become a critical question. Nanosizing is a typical strategy to achieve high rate capability due to drastically shortened Li-ion diffusion distances. However, the high surface area of nanosized particles increases the side reaction with the electrolyte, which leads to poor cycling performance. Spinels with disordered structures could also lead to improved rate capability, but the cyclability is low due to the presence of Mn3+ ions. Herein, we systematically investigated the synergic interaction between particle size and cation ordering. Our results indicated that a microsized disordered phase and a nanosized ordered phase of LNMO materials exhibited the best combination of high rate capability and cycling performance.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Spinel LiNi0.5Mn1.5O4 cathode for rechargeable lithium-ion batteries: Nano vs micro, ordered phase (P4332) vs disordered phase (Fd3m)

Show Author's information Jingang YangXiaopeng HanXiaolong ZhangFangyi Cheng( )Jun Chen
Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education)College of ChemistryNankai UniversityTianjin300071China

Abstract

Since the high-voltage spinel LiNi0.5Mn1.5O4 (LNMO) is one of the most attractive cathode materials for lithium-ion batteries, how to improve the cycling and rate performance simultaneously has become a critical question. Nanosizing is a typical strategy to achieve high rate capability due to drastically shortened Li-ion diffusion distances. However, the high surface area of nanosized particles increases the side reaction with the electrolyte, which leads to poor cycling performance. Spinels with disordered structures could also lead to improved rate capability, but the cyclability is low due to the presence of Mn3+ ions. Herein, we systematically investigated the synergic interaction between particle size and cation ordering. Our results indicated that a microsized disordered phase and a nanosized ordered phase of LNMO materials exhibited the best combination of high rate capability and cycling performance.

Keywords: nanomaterials, microstructures, lithium-ion batteries, spinel LiNi0.5Mn1.5O4, crystal phases

References(32)

1

Tarascon, J. -M.; Armand, M. Issues and challenges facing rechargeable lithium batteries. Nature 2001, 414, 359-367.

2

Cheng, F. Y.; Liang, J.; Tao, Z. L.; Chen, J. Functional materials for rechargeable batteries. Adv. Mater. 2011, 23, 1695-1715.

3

Xiao, X. L.; Liu, X. F.; Wang, L.; Zhao, H.; Hu, Z. B.; He, X. M.; Li, Y. D. LiCoO2 nanoplates with exposed (001) planes and high rate capability for lithium-ion batteries. Nano Res. 2012, 5, 395-401.

4

Zhou, L.; Zhao, D. Y.; Lou, X. W. LiNi0.5Mn1.5O4 hollow structures as high-performance cathodes for lithium ion batteries. Angew. Chem. Int. Ed. 2012, 51, 239-241.

5

Xiao, J.; Chen, X. L.; Sushko, P. V.; Sushko, M. L.; Kovarik, L.; Feng, J. J.; Deng, Z. Q.; Zheng, J. M.; Graff, G. L.; Nie, Z. M.; et al. High-performance LiNi0.5Mn1.5O4 spinel controlled by Mn3+ concentration and site disorder. Adv. Mater. 2012, 24, 2109-2116.

6

Arrebola, J. C.; Caballero, A.; Cruz, M.; Hernán, L.; Morales, J.; Castellón, E. R. Crystallinity control of a nanostructured LiNi0.5Mn1.5O4 spinel via polymer-assisted synthesis: A method for improving its rate capability and performance in 5 V lithium batteries. Adv. Funct. Mater. 2006, 16, 1904-1912.

7

Wang, L. P.; Li, H.; Huang, X. J.; Baudrin, E. A comparative study of Fd3m and P4332 "LiNi0.5Mn1.5O4". Solid State Ionics 2011, 193, 32-38.

8

Kim, J. -H.; Myung, S. -T.; Yoon, C. S.; Kang, S. G.; Sun, Y. -K. Comparative study of LiNi0.5Mn1.5O4-δ and LiNi0.5Mn1.5O4 cathodes having two crystallographic structures: Fd3m and P4332. Chem. Mater. 2004, 16, 906-914.

9

Cabana, J.; Cabans-cabanas, M.; Omenya, F. O.; Chernova, N. A.; Zeng, D. L.; Whittingham, M. S.; Grey, C. P. Composition-structure relationships in the Li-ion battery electrode material LiNi0.5Mn1.5O4. Chem. Mater. 2012, 24, 2952-2964.

10

Song, J.; Shin, D. W.; Lu, Y. H.; Amos, C. D.; Manthiram, A.; Goodenough, J. B. Role of oxygen vacancies on the performance of Li[Ni0.5-xMn1.5+x]O4 (x = 0, 0.05, and 0.08) spinel cathodes for lithium-ion batteries. Chem. Mater. 2012, 24, 3101-3109.

11

Ma, X. H.; Kang, B.; Ceder, G. High rate micron-sized ordered LiNi0.5Mn1.5O4. J. Electrochem. Soc. 2010, 157, A925-A931.

12

Shin, D. W.; Bridges, C. A.; Huq, A.; Paranthaman, M. P.; Manthiram, A. Role of cation ordering and surface segregation in high-voltage spinel LiMn1.5Ni0.5-xMxO4 (M = Cr, Fe, and Ga) cathodes for lithium-ion batteries. Chem. Mater. 2012, 24, 3720-3731.

13

Zheng, J. M.; Xiao, J.; Yu, X. Q.; Kovarik, L.; Gu, M.; Omenya, F.; Chen, X. L.; Yang, X. -Q.; Liu, J.; Graff, G. L.; et al. Enhanced Li+ ion transport in LiNi0.5Mn1.5O4 through control of site disorder. Phys. Chem. Chem. Phys. 2012, 14, 13515-13521.

14

Chen, Z. X.; Qiu, S.; Cao, Y. L.; Ai, X. P.; Xie, K.; Hong, X. B.; Yang, H. X. Surface-oriented and nanoflake-stacked LiNi0.5Mn1.5O4 spinel for high-rate and long-cycle-life lithium ion batteries. J. Mater. Chem. 2012, 22, 17768-17772.

15

Wang, H. L.; Tan, T. A.; Yang, P.; Lai, M. O.; Lu, L. High-rate performances of the Ru-doped spinel LiNi0.5Mn1.5O4: Effects of doping and particle size. J. Phys. Chem. C 2011, 115, 6102-6110.

16

Shaju, K. M.; Bruce, P. G. Nano-LiNi0.5Mn1.5O4 spinel: A high power electrode for Li-ion batteries. Dalton Trans. 2008, 5471-5475.

17

Kunduraci, M.; Amatucci, G. G. The effect of particle size and morphology on the rate capability of 4.7 V LiMn1.5+δNi0.5-δO4 spinel lithium-ion battery cathodes. Electrochim. Acta 2008, 53, 4193-4199.

18

Cheng, F. Y.; Wang, H. B.; Zhu, Z. Q.; Wang, Y.; Zhang, T. R.; Tao, Z. L.; Chen, J. Porous LiMn2O4 nanorods with durable high-rate capability for rechargeable Li-ion batteries. Energy Environ. Sci. 2011, 4, 3668-3675.

19

Li, C. S.; Zhang, S. Y.; Cheng, F. Y.; Ji, W. Q.; Chen, J. Porous LiFePO4/NiP composite nanospheres as the cathode materials in rechargeable lithium ion batteries. Nano Res. 2008, 1, 242-248.

20

Lee, H. -W.; Muralidharan, P.; Ruffo, R.; Mari, C. M.; Cui, Y.; Kim, D. K. Ultrathin spinel LiMn2O4 nanowires as high power cathode materials for Li-ion batteries. Nano Lett. 2010, 10, 3852-3856.

21

Li, T.; Ai, X. P.; Yang, H. X. Reversible electrochemical conversion reaction of Li2O/CuO nanocomposites and their application as high-capacity cathode material for Li-ion batteries. J. Phys. Chem. C 2011, 115, 6167-6174.

22

Okubo, M.; Hosono, E.; Kim, J.; Enomoto, M.; Kojima, N.; Kudo, T.; Zhou, H. S.; Honma, I. Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode. J. Am. Chem. Soc. 2007, 129, 7444-7452.

23

Xiao, X. L.; Lu, J.; Li, Y. D. LiMn2O4 microspheres: Synthesis, characterization and use as a cathode in lithium ion batteries. Nano Res. 2010, 3, 733-737.

24

Jiang, Y.; Yang, Z.; Luo, W.; Hu, X. L.; Huang, Y. H. Hollow 0.3Li2MnO3·0.7LiNi0.5Mn0.5O2 microspheres as a high-performance cathode material for lithium-ion batteries. Phys. Chem. Chem. Phys. 2013, 15, 2954-2960.

25

Liu, J. L.; Chen, L.; Hou, M. Y.; Wang, F.; Che, R. C.; Xia, Y. Y. General synthesis of xLi2MnO3· (1-x)LiMn1/3Ni1/3Co1/3O2 nanomaterials by a molten-salt method: Towards a high capacity and high power cathode for rechargeable lithium batteries. J. Mater. Chem. 2012, 22, 25380-25387.

26

Lee, K. T.; Cho, J. Roles of nanosize in lithium reactive nanomaterials for lithium ion batteries. Nano Today, 2011, 6, 28-41.

27

Guo, Y. G.; Hu, J. S.; Wan, L. J. Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater. 2008, 20, 2878-2887.

28

Talyosef, Y.; Markovsky, B.; Lavi, R.; Salitra, G.; Aurbach, D.; Kovacheva, D.; Gorova, M.; Zhecheva, E.; Stoyanova, R. Comparing the behavior of nano- and microsized particles of LiMn1.5Ni0.5O4 spinel as cathode materials for Li-ion batteries. J. Electrochem. Soc. 2007, 154, A682-A691.

29

Arrebola, J. C.; Caballero, A.; Hernán, L.; Morales, J. Expanding the rate capabilities of the LiNi0.5Mn1.5O4 spinel by exploiting the synergistic effect between nano and microparticles. Electrochem. Solid-State Lett. 2005, 8, A641-A645.

30

Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Schalkwijk, W. V. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366-377.

31

Liu, J.; Manthiram, A. Understanding the improved electrochemical performances of Fe-substituted 5 V spinel cathode LiMn1.5Ni0.5O4. J. Phys. Chem. C 2009, 113, 15073-15079.

32

Zhang, X. L.; Cheng, F. Y.; Yang, J. G.; Chen, J. LiNi0.5Mn1.5O4 porous nanorods as high-rate and long-life cathodes for Li-ion batteries. Nano Lett. 2013, 13, 2822-2825.

File
nr-6-9-679_ESM.pdf (733.4 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 27 May 2013
Revised: 20 June 2013
Accepted: 24 June 2013
Published: 06 July 2013
Issue date: September 2013

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Acknowledgements

Acknowledgements

This work was supported by programs of the National Basic Research Program (973 Program) of China (No. 2011CB935900), the National Natural Science Foundation of China (Nos. 21231005 and 21076108), and the Discipline Innovative Intelligence Plan (111 Project, No. B12015).

Return