Journal Home > Volume 6 , Issue 9

We investigate the charge transport in close-packed ultra-narrow (1.5 nm diameter) gold nanowires stabilized by oleylamine ligands. We give evidence of charging effects in the weakly coupled one-dimensional (1D) nanowires, monitored by the temperature and the bias voltage. At low temperature, in the Coulomb blockade regime, the current flow reveals an original cooperative multi-hopping process between 1D-segments of Au-NWs, minimising the charging energy cost. Above the Coulomb blockade threshold voltage and at high temperature, the charge transport evolves into a sequential tunneling regime between the nearest-nanowires. Our analysis shows that the effective length of the Au-NWs inside the bundle is similar to the 1D localisation length of the electronic wave function (of the order of 120 nm ± 20 nm), but almost two orders of magnitude larger than the diameter of the nanowire. This result confirms the high structural quality of the Au-NW segments.


menu
Abstract
Full text
Outline
About this article

Cotunneling transport in ultra-narrow gold nanowire bundles

Show Author's information Anaïs Loubat1,2Walter Escoffier1Lise-Marie Lacroix2Guillaume Viau2Reasmey Tan2Julian Carrey2Bénédicte Warot-Fonrose3Bertrand Raquet1( )
Laboratoire National des Champs Magnétiques Intenses CNRS-INSA-UJF-UPS, UPR3228; 143 avenue de Rangueil F-31400 Toulouse France
Université de Toulouse INSA, UPS, LPCNO (Laboratoire de Physique et Chimie des Nano-Objets) F-31077 Toulouse, France; CNRS; UMR5215; LPCNO, F-31077 Toulouse France
Centre d'Elaboration de Matériaux et d'Etudes Structurales CNRS, 29 rue Jeanne Marvig F-31077 Toulouse France

Abstract

We investigate the charge transport in close-packed ultra-narrow (1.5 nm diameter) gold nanowires stabilized by oleylamine ligands. We give evidence of charging effects in the weakly coupled one-dimensional (1D) nanowires, monitored by the temperature and the bias voltage. At low temperature, in the Coulomb blockade regime, the current flow reveals an original cooperative multi-hopping process between 1D-segments of Au-NWs, minimising the charging energy cost. Above the Coulomb blockade threshold voltage and at high temperature, the charge transport evolves into a sequential tunneling regime between the nearest-nanowires. Our analysis shows that the effective length of the Au-NWs inside the bundle is similar to the 1D localisation length of the electronic wave function (of the order of 120 nm ± 20 nm), but almost two orders of magnitude larger than the diameter of the nanowire. This result confirms the high structural quality of the Au-NW segments.

Keywords: ultra-narrow gold nanowires, 1D nano-objects, electronic transport, variable cotunneling, Coulomb blockade

References(36)

1

Imry, Y. Introduction to Mesoscopic Physics; Oxford University Press: Oxford, 2002.

2

Appell, D. Nanotechnology: Wired for success. Nature 2002, 419, 553-555.

3

Lu, W.; Lieber, C. M. Nanoelectronics from the bottom up. Nat. Mater. 2007, 6, 841-850.

4

Wang, Z. L. Nanowires and Nanobelts: Materials, Properties and Devices; Kluwer Academic Publishers: Boston, 2003.

DOI
5

Xia, Y. N.; Yang, P. D.; Sun, Y. G.; Wu, Y. Y.; Mayers, B.; Gates, B.; Yin, Y. D.; Kim, F.; Yan, H. Q. One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 2003, 15, 353-389.

6

Wang, C.; Hu, Y. J.; Lieber, C. M.; Sun, S. H. Ultrathin Au nanowires and their transport properties. J. Am. Chem. Soc. 2008, 130, 8902-8903.

7

Patolsky, F.; Lieber, C. M. Nanowire nanosensors. Mater. Today 2005, 8, 20-28.

8

Barrelet, C. J.; Greytak, A. B.; Lieber, C. M. Nanowire photonic circuit elements. Nano Lett. 2004, 4, 1981-1985.

9

Shi, P.; Zhang, J. Y.; Lin, H. Y.; Bohm, P. W. Effect of molecular adsorption on the electrical conductance of single Au nanowires fabricated by electron-beam lithography and focused ion beam etching. Small 2010, 6, 2598-2063.

10

Jacke, S.; Plaza, J. L.; Wilcoxon, J. P.; Palmer, R. E.; Beecher, P.; De Marzi, G.; Redmond, G.; Quinn, A. J.; Chen, Y. Charge transport in nanocrystal wires created by direct electron beam writing. Micro Nano Lett. 2010, 5, 274-277.

11

Song, J. H.; Wu, Y.; Messer, B.; Kind, H.; Yang, P. Metal nanowire formation using Mo3Se3- as reducing and sacrificing templates. J. Am. Chem. Soc. 2001, 123, 10397-10398.

12

Liu, J.; Duan, J. L.; Toimil-Morales, M. E.; Karim, S.; Cornelius, T. W.; Dobrey, D.; Yao, H. J.; Sun, Y. M.; Hou, M. D.; Mo, D.; Wang, Z. G.; Neumann, R. Electrochemical fabrication of single-crystalline and polycrystalline Au nanowires: The influence of deposition parameters. Nanotechnology 2006, 17, 1922.

13

Halder, A.; Ravishankar, R. Ultrafine single-crystalline gold nanowire arrays by oriented attachment. Adv. Mater. 2007, 19, 1854-1858.

14

Pazos-Perez, N.; Baranov, D.; Irsen, S.; Hilgendorff, M.; Liz-Marzan, L. M.; Giersig, M. Synthesis of flexible, ultrathin gold nanowires in organic media. Langmuir 2008, 24, 9855-9860.

15

Lagos, M. J.; Sato, F.; Autreto, P. A. S.; Galvao, D. S.; Rodrigues, V.; Ugarte, D. Temperature effects on the atomic arrangement and conductance of atomic-size gold nanowires generated by mechanical stretching. Nanotechnology 2010, 21, 485702.

16

Chen, J. Y.; Wiley, B. J.; Xia, Y. N. One-dimensional nanostructures of metals: Large-scale synthesis and some potential applications. Langmuir 2007, 23, 4120-4129.

17

Huo, Z. Y.; Tsung, Ch-K.; Huang, W. Y.; Zhang, X. F.; Yang, P. D. Sub-two nanometer single crystal Au nanowires. Nano Lett. 2008, 8, 2041-2044.

18

Mott, N. F.; Davis, E. A. Electronic Processes in Non-Crystalline Materials; Oxford University Press: New York, 1979.

19

Shklovskii, B. I.; Efros, A. L. Electronic Properties of Doped Semiconductors; Springer: London, 1984.

DOI
20

Pollak, M.; Shkovskii, B. I. Hopping Transport in Solids; North-Holland: New York, 1991.

21

Aleshin, A. N.; Lee, J. Y.; Chu, S. W.; Lee, S. W.; Kim, B.; Ahn, S. J.; Park, Y. W. Hopping conduction in polydiacetylene single crystals. Phys. Rev. B 2004, 69, 214203.

22

Sheng, P.; Abeles, B.; Arie, Y. Hopping conductivity in granular metals. Phys. Rev. Lett. 1973, 31, 44-47.

23

Mitani, S.; Takahashi, S.; Takanashi, K.; Yakushiji, K.; Maekawa, S.; Fujimori, H. Enhanced magnetoresistance in insulating granular systems: Evidence for higher-order tunneling. Phys. Rev. Lett. 1998, 81, 2799-2802.

24

Yu, D.; Wang, C.; Wehrenberg, B. L.; Guyot-Sionnest, P. Variable range hopping conduction in semiconductor nanocrystal solids. Phys. Rev. Lett. 2004, 92, 216802.

25

Liao, Z. M.; Xun, J.; Yu, D. P. Electron transport in an array of platinum quantum dots. Phys. Lett. A 2005, 345, 386-390.

26

Romero, H. E.; Drndic, M. Coulomb blockade and hopping conduction in PbSe quantum dots. Phys. Rev. Lett. 2005, 95, 156801.

27

Dunford, J. L.; Suganuma, Y.; Dhirani, A. A.; Statt, B. Quasilocalized hopping in molecularly linked Au nanoparticle arrays near the metal-insulator transition. Phys. Rev. B 2005, 72, 075441.

28

Beloborodov, I. S.; Lopatin, A. V.; Vinokur, V. M. Granular electronic systems. Rev. Mod. Phys. 2007, 79, 469-518.

29

Beloborodov, I. S.; Lopatin, A. V.; Vinokur, V. M. Coulomb effects and hopping transport in granular metals. Phys. Rev. B 2005, 72, 125121.

30

Averin, D. V.; Nazarov, Y. V. Virtual electron diffusion during quantum tunneling of the electric charge. Phys. Rev. Lett. 1990, 65, 2446-2449.

31

Tran, T. B.; Beloborodov, I. S.; Lin, X. M.; Bigini, T. P.; Vinokur, V. M.; Jaeger, H. M. Multiple cotunneling in large quantum dot arrays. Phys. Rev. Lett. 2005, 95, 076806.

32

Tran, T. B.; Beloborodov, I. S.; Lin, X. M.; Hu, J.; Lin, X. M.; Rosenbaum, T. F.; Jaeger, H. M. Sequential tunneling and inelastic cotunneling in nanoparticle arrays. Phys. Rev. B 2008, 78, 075437.

33

Parthasarathy, R.; Lin, X. M.; Elteto, K.; Rosenbaum, T. F.; Jaeger, H. M. Percolating through networks of random thresholds: Finite temperature electron tunneling in metal nanocrystal arrays. Phys. Rev. Lett. 2004, 92, 076801.

34

Middleton, A. A.; Wingreen, N. S. Collective transport in arrays of small metallic dots. Phys. Rev. Lett. 1993, 71, 3198-3201.

35

Parthasarathy, R.; Lin, X. M.; Jaeger, H. M. Electronic transport in metal nanocrystal arrays: The effect of structural disorder on scaling behavior. Phys. Rev. Lett. 2001, 87, 186807.

36
The mutual capacitance between parallel NWs is estimated to 0.8 aF, roughly 5 times smaller than the geometrical capacitance defined in Eq. (2).
Publication history
Copyright
Acknowledgements

Publication history

Received: 20 March 2013
Revised: 27 May 2013
Accepted: 27 May 2013
Published: 17 June 2013
Issue date: September 2013

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Acknowledgements

Acknowledgements

Device preparations were carried out at Laboratoire d'Analyse et d'Architecture des Systèmes (LAAS). Part of this work is supported by European Magnetic Network (EuroMagNET), contract No. 228043 and the French network French acronym for Transmission Electron Microscope and Atomic Probe (METSA). The authors acknowledge the financial support of the Laboratoire d'excellence Nano Mesures Extrêmes Théorie (Labex NEXT), No. 11 LABX 075.

Return