Journal Home > Volume 6 , Issue 8

A colloidal solution of 5 nm Au tetradecanethiol-coated nanoparticles is synthesized. After fast evaporation of one drop, ordered monolayers both composed of single domain and polycrystalline nanocrystals are obtained. On increasing the amount of materials and the evaporation time, nanocrystal films with irregular outlines are produced together with close-packed 3D superlattices exhibiting a truncated-tetrahedral shape. Using low-frequency micro-Raman scattering spectroscopy and electron microscopy the building block nanocrystallinity is characterized. Spontaneous nanocrystallinity segregation is revealed: the truncated-tetrahedral supracrystals are shown to mainly contain single domain building blocks while the supracrystalline films are composed of a mixture of single domain and polycrystalline nanocrystals. This observation points out the correlation between the nanocrystallinity segregation involved in the growth of the nanocrystal superlattices and their morphology.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Impact of nanocrystallinity segregation on the growth and morphology of nanocrystal superlattices

Show Author's information Yanfen Wan1,2Hervé Portalès1,2Nicolas Goubet1,2Alain Mermet3Marie-Paule Pileni1,2( )
Université Pierre et Marie Curie Paris 6 UMR 7070 LM2N, BP 524 place Jussieu 75005Paris France
Centre National de la Recherche Scientifique Unité Mixte de Recherche 7070 LM2N, 4 place Jussieu4 place Jussieu 75005Paris France
Université Lyon 1 Institut Lumière Matière Unité Mixte de Recherche 5306 CNRSBât. A. Kastler10 rue Ada Byron 69622Villeurbanne France

Abstract

A colloidal solution of 5 nm Au tetradecanethiol-coated nanoparticles is synthesized. After fast evaporation of one drop, ordered monolayers both composed of single domain and polycrystalline nanocrystals are obtained. On increasing the amount of materials and the evaporation time, nanocrystal films with irregular outlines are produced together with close-packed 3D superlattices exhibiting a truncated-tetrahedral shape. Using low-frequency micro-Raman scattering spectroscopy and electron microscopy the building block nanocrystallinity is characterized. Spontaneous nanocrystallinity segregation is revealed: the truncated-tetrahedral supracrystals are shown to mainly contain single domain building blocks while the supracrystalline films are composed of a mixture of single domain and polycrystalline nanocrystals. This observation points out the correlation between the nanocrystallinity segregation involved in the growth of the nanocrystal superlattices and their morphology.

Keywords: metal nanoparticles, supracrystals, close-packed self-assembly, Raman scattering spectroscopy

References(38)

1

Motte, L.; Billoudet, F.; Pileni, M. P. Self-assembled monolayer of nanosized particles differing by their sizes. J. Phys. Chem. 1995, 99, 16425–16429.

2

Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Self-organization of CdSe nanocrystallites into three-dimensional quantum dot superlattices. Science 1995, 270, 1335–1338.

3

Whetten, R. L.; Shafigullin, M. N.; Khoury, J. T.; Schaaff, T. G.; Vezmar, I.; Alvarez, M. M.; Wilkinson, A. Crystal structures of molecular gold nanocrystal arrays. Acc. Chem. Res. 1999, 32, 397–406.

4

Prasad, B. L. V.; Sorensen, C. M.; Klabunde, K. J. Gold nanoparticle superlattices. Chem. Soc. Rev. 2008, 37, 1871–1883.

5

Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annu. Rev. Mater. Sci. 2000, 30, 545–610.

6

Wang, Z. L. Transmission electron microscopy of shape-controlled nanocrystals and their assemblies. J. Phys. Chem. B 2000, 104, 1153–1175.

7

Collier, C. P.; Vossmeyer, T.; Heath, J. R. Nanocrystal superlattice. Annu. Rev. Phys. Chem. 1998, 49, 371–404.

8

Shevchenko, E. V.; Talapin, D. V.; Kotov, N. A.; O'Brien, S.; Murray, C. B. Structural diversity in binary nanoparticle superlattices. Nature 2006, 439, 55–59.

9

Xie, S.; Zhou, X.; Han, X.; Kuang, Q.; Jin, M.; Jiang, Y.; Xie, Z.; Zheng, L. Supercrystals from crystallization of octahedral MnO nanocrystals. J. Phys. Chem. C 2009, 113, 19107–19111.

10

Nozawa, J.; Tsukamoto, K.; van Enckevort, W.; Nakamura, T.; Kimura, Y.; Miura, H.; Satoh, H.; Nagashima, K.; Konoto, M. Magnetite 3D colloidal crystals formed in the early solar system 4.6 billion years ago. J. Am. Chem. Soc. 2011, 133, 8782–8785.

11

Yarema, M.; Kovalenko, M. V.; Hesser, G.; Talapin, D. V.; Heiss, W. Highly monodisperse bismuth nanoparticles and their three-dimensional superlattices. J. Am. Chem. Soc. 2010, 132, 15158–15159.

12

Park, S. Y.; Lytton-Jean, A. K. R.; Lee, B.; Weigand, S.; Schatz, G. C.; Mirkin, C. A. DNA-programmable nanoparticle crystallization. Nature 2008, 451, 553–556.

13

Lisiecki, I.; Albouy, P. A.; Pileni, M. P. Face-centered-cubic "supracrystals" of cobalt nanocrystals. Adv. Mater. 2003, 15, 712–716.

14

Goubet, N.; Richardi, J.; Albouy, P. -A.; Pileni, M. -P. Which forces control supracrystal nucleation in organic media? Adv. Funct. Mater. 2011, 21, 2693–2704.

15

Pileni, M. -P. Self-assembly of inorganic nanocrystals: Fabrication and collective intrinsic properties. Acc. Chem. Res. 2007, 40, 685–693.

16

Zaitseva, N.; Dai, Z. R.; Leon, F. R.; Krol, D. Optical properties of cdse superlattices. J. Am. Chem. Soc. 2005, 127, 10221–10226.

17

Talapin, D. V.; Shevchenko, E. V.; Murray, C. B.; Titov, A. V.; Král, P. Dipole−dipole interactions in nanoparticle superlattices. Nano Lett. 2007, 7, 1213–1219.

18

Hanrath, T. Colloidal nanocrystal quantum dot assemblies as artificial solids. J. Vac. Sci. Technol., A: Vacuum, Surfaces, and Films 2012, 30, 030802.

19

Chen, J.; Dong, A.; Cai, J.; Ye, X.; Kang, Y.; Kikkawa, J. M.; Murray, C. B. Collective dipolar interactions in self-assembled magnetic binary nanocrystal superlattice membranes. Nano Lett. 2010, 10, 5103–5108.

20

Courty, A.; Mermet, A.; Albouy, P. A.; Duval, E.; Pileni, M. P. Vibrational coherence of self-organized silver nanocrystals in f. c. c. supra-crystals. Nat. Mater. 2005, 4, 395–398.

21

Portalès, H.; Goubet, N.; Saviot, L.; Adichtchev, S.; Murray, D. B.; Mermet, A.; Duval, E.; Pileni, M. P. Probing atomic ordering and multiple twinning in metal nanocrystals through their vibrations. Proc. Natl. Acad. Sci. USA 2008, 105, 14784–14789.

22

Goubet, N.; Yan, C.; Polli, D.; Portalès, H.; Arfaoui, I.; Cerullo, G.; Pileni, M. P. Modulating physical properties of isolated and self-assembled nanocrystals through change in nanocrystallinity. Nano Lett. 2013, 13, 504–508.

23

Tang, Y.; Ouyang, M. Tailoring properties and functionalities of metal nanoparticles through crystallinity engineering. Nat. Mater. 2007, 6, 754–759.

24

Petrova, H.; Perez-Juste, J.; Zhang, Z.; Zhang, J.; Kosel, T.; Hartland, G. V. Crystal structure dependence of the elastic constants of gold nanorods. J. Mater. Chem. 2006, 16, 3957–3963.

25

Gu, Q. F.; Krauss, G.; Steurer, W.; Gramm, F.; Cervellino, A. Unexpected high stiffness of Ag and Au nanoparticles. Phys. Rev. Lett. 2008, 100, 045502.

26

Saviot, L.; Murray, D. B. Acoustic vibrations of anisotropic nanoparticles. Phys. Rev. B 2009, 79, 214101.

27

Sauceda, H. E.; Mongin, D.; Maioli, P.; Crut, A.; Pellarin, M.; Fatti, N. D.; Vallée, F.; Garzón, I. L. Vibrational properties of metal nanoparticles: Atomistic simulation and comparison with time-resolved investigation. J. Phys. Chem. C 2012, 116, 25147–25156.

28

Crut, A.; Maioli, P.; Fatti, N. D.; Vallee, F. Anisotropy effects on the time-resolved spectroscopy of the acoustic vibrations of nanoobjects. Phys. Chem. Chem. Phys. 2009, 11, 5882–5888.

29

Wiley, B.; Herricks, T.; Sun, Y.; Xia, Y. Polyol synthesis of silver nanoparticles: Use of chloride and oxygen to promote the formation of single-crystal, truncated cubes and tetrahedrons. Nano Lett. 2004, 4, 1733–1739.

30

Yang, Z.; Cavalier, M.; Walls, M.; Bonville, P.; Lisiecki, I.; Pileni, M. P. A Phase-solution annealing strategy to control the cobalt nanocrystal anisotropy: Structural and magnetic investigations. J. Phys. Chem. C 2012, 116, 15723–15730.

31

Goubet, N.; Portalès, H.; Yan, C.; Arfaoui, I.; Albouy, P. -A.; Mermet, A.; Pileni, M. -P. Simultaneous growths of gold colloidal crystals. J. Am. Chem. Soc. 2012, 134, 3714–3719.

32

Portalès, H.; Goubet, N.; Sirotkin, S.; Duval, E.; Mermet, A.; Albouy, P. A.; Pileni, M. P. Crystallinity segregation upon selective self-assembling of gold colloidal single nanocrystals. Nano Lett. 2012, 12, 5292–5298.

33

Portalès, H.; Goubet, N.; Saviot, L.; Yang, P.; Sirotkin, S.; Duval, E.; Mermet, A.; Pileni, M. -P. Crystallinity dependence of the plasmon resonant Raman scattering by anisotropic gold nanocrystals. ACS Nano 2010, 4, 3489–3497.

34

Ghavanloo, E.; Fazelzadeh, S. A. Radial vibration of free anisotropic nanoparticles based on nonlocal continuum mechanics. Nanotechnology 2013, 24, 075702.

35

Wan, Y. F.; Goubet, N.; Albouy, P. A.; Pileni, M. P. Hierarchy in Au nanocrystal ordering in supracrystals: A potential approach to detect new physical properties. Langmuir 2013, 29, 7456–7463.

36

Ino. S.; Ogawa, S. Multiply twinned particles at earlier stages of gold film formation on alkalihalide crystals. J. Phys. Soc. Jpn. 1967, 22, 1365–1374.

37

Quan, Z.; Fang, J. Superlattices with non-spherical building blocks. Nano Today 2010, 5, 390–411.

38

Visscher, W. M.; Migliori, A.; Bell, T. M.; Reinert, R. A. On the normal modes of free vibration of inhomogeneous and anisotropic elastic objects. J. Acoust. Soc. Am. 1991, 90, 2154–2162.

File
nr-6-8-611_ESM.pdf (382.3 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 02 April 2013
Revised: 15 May 2013
Accepted: 23 May 2013
Published: 24 June 2013
Issue date: August 2013

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Acknowledgements

Acknowledgements

The authors thank Dr. I. Arfaoui for fruitful discussion and Dr. P. A. Albouy for SAXRD characterization. Y. F. W., N. G. and M. P. P. contributions to this research have received funding from an Advanced Grant of the European Research Council under grant agreement n°267129.

Return