Journal Home > Volume 6 , Issue 8

Understanding the structural characteristics and growth mechanism(s) are essential for generating core–shell nano-heterostructures with distinctive properties. Especially in lanthanide-based nanocrystals, rational design of the core–shell composition can be utilized to enhance/tune the optical properties of the final nanostructure, or can be used to integrate multiple functional applications (e.g., luminescent/magnetic). In this article, we review the progress in our current understanding of the epitaxial shell growth in sodium lanthanide fluoride (NaLnF4) nanocrystals. In order to understand epitaxial shell growth the core nanocrystals have to be uniform, and to date the synthesis of high quality near uniform size/shape dispersion controlled synthesis of lanthanide-based nanocrystals has been achieved mainly with this class of nanocrystals. The progress in core–shell synthesis and the epitaxial shell growth mechanism in this class of nanocrystals (NaLnF4) are reviewed, and a general perspective is provided on the core–shell morphology based on different characterization techniques. While there has been tremendous progress in studying the impact of core–shell structures in various functional applications, this review also highlights, in our view, the still limited understanding of ways to control the core–shell morphology and it emphasizes some important, unanswered questions that remain to be addressed to maximize their performance.


menu
Abstract
Full text
Outline
About this article

Sodium lanthanide fluoride core–shell nanocrystals: A general perspective on epitaxial shell growth

Show Author's information Noah J. J. JohnsonFrank C. J. M. van Veggel( )
Department of Chemistry, University of Victoria P.O. Box 3065 Victoria, British Columbia, Canada, V8W 3V6

Abstract

Understanding the structural characteristics and growth mechanism(s) are essential for generating core–shell nano-heterostructures with distinctive properties. Especially in lanthanide-based nanocrystals, rational design of the core–shell composition can be utilized to enhance/tune the optical properties of the final nanostructure, or can be used to integrate multiple functional applications (e.g., luminescent/magnetic). In this article, we review the progress in our current understanding of the epitaxial shell growth in sodium lanthanide fluoride (NaLnF4) nanocrystals. In order to understand epitaxial shell growth the core nanocrystals have to be uniform, and to date the synthesis of high quality near uniform size/shape dispersion controlled synthesis of lanthanide-based nanocrystals has been achieved mainly with this class of nanocrystals. The progress in core–shell synthesis and the epitaxial shell growth mechanism in this class of nanocrystals (NaLnF4) are reviewed, and a general perspective is provided on the core–shell morphology based on different characterization techniques. While there has been tremendous progress in studying the impact of core–shell structures in various functional applications, this review also highlights, in our view, the still limited understanding of ways to control the core–shell morphology and it emphasizes some important, unanswered questions that remain to be addressed to maximize their performance.

Keywords: core–shell, epitaxy, upconverting nanocrystals, lanthanides

References(43)

1

Chaudhuri, R. G.; Paria, S. Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 2012, 112, 2373–2433.

2

Cozzoli, P. D.; Pellegrino, T.; Manna, L. Synthesis, properties and perspectives of hybrid nanocrystal structures. Chem. Soc. Rev. 2006, 35, 1195–1208.

3

Reiss, P.; Protière, M.; Li, L. Core/shell semiconductor nanocrystals. Small 2009, 5, 154–168.

4

Kömpe, K.; Borchert, H.; Storz, J.; Lobo, A.; Adam, S.; Möller, T.; Haase, M. Green-emitting CePO4:Tb/LaPO4 core–shell nanoparticles with 70% photoluminescence quantum yield. Angew. Chem. Int. Edit. 2003, 42, 5513–5516.

5

Stouwdam, J. W.; van Veggel, F. C. J. M. Improvement in the luminescence properties and processability of LaF3/Ln and LaPO4/Ln nanoparticles by surface modification. Langmuir 2004, 20, 11763–11771.

6

Haase, M.; Schäfer, H. Upconverting nanoparticles. Angew. Chem. Int. Edit. 2011, 50, 5808–5829.

7

Auzel, F. Upconversion and anti-Stokes processes with f and d ions in solids. Chem. Rev. 2004, 104, 139–173.

8

Menyuk, N.; Pierce, J. W.; Dwight, K. NaYF4-Yb,Er—Efficient upconversion phosphor. Appl. Phys. Lett. 1972, 21, 159–161.

9

Krämer, K. W.; Biner, D.; Frei, G.; Güdel, H. U.; Hehlen, M. P.; Lüthi, S. R. Hexagonal sodium yttrium fluoride based green and blue emitting upconversion phosphors. Chem. Mater. 2004, 16, 1244–1251.

10

Boyer, J. C.; van Veggel, F. C. J. M. Absolute quantum yield measurements of colloidal NaYF4:Er3+,Yb3+ upconverting nanoparticles. Nanoscale 2010, 2, 1417–1419.

11

Carbone, L.; Cozzoli, P. D. Colloidal heterostructured nanocrystals: Synthesis and growth mechanisms. Nano Today 2010, 5, 449–493.

12

Yi, G. S.; Chow, G. M. Water-soluble NaYF4:Yb,Er(Tm)/NaYF4/polymer core/shell/shell nanoparticles with significant enhancement of upconversion fluorescence. Chem. Mater. 2007, 19, 341–343.

13

Qian, H. S.; Zhang, Y. Synthesis of hexagonal-phase core–shell NaYF4 nanocrystals with tunable upconversion fluorescence. Langmuir 2008, 24, 12123–12125.

14

Vetrone, F.; Naccache, R.; Mahalingam, V.; Morgan, C. G.; Capobianco, J. A. The active-core/active-shell approach: A strategy to enhance the upconversion luminescence in lanthanide-doped nanoparticles. Adv. Funct. Mater. 2009, 19, 2924–2929.

15

Chen, F.; Bu, W.; Zhang, S.; Liu, X.; Liu, J.; Xing, H.; Xiao, Q.; Zhou, L.; Peng, W.; Wang, L.; Shi, J. Positive and negative lattice shielding effects co-existing in Gd(Ⅲ) ion doped bifunctional upconversion nanoprobes. Adv. Funct. Mater. 2011, 21, 4285–4294.

16

Wang, Y. F.; Sun, L. D.; Xiao, J. W.; Feng, W.; Zhou, J. C.; Shen, J.; Yan, C. H. Rare-earth nanoparticles with enhanced upconversion emission and suppressed rare-earth-ion leakage. Chem. Eur. J. 2012, 18, 5558–5564.

17

Boyer, J. C.; Carling, C. J.; Gates, B. D.; Branda, N. R. Two-way photoswitchingusing one type of near-infrared light, upconverting nanoparticles, and changing only the light intensity. J. Am. Chem. Soc. 2010, 132, 15766–15772.

18

Liu, Y. S.; Tu, D. T.; Zhu, H. M.; Li, R. F.; Luo, W. Q.; Chen, X. Y. A strategy to achieve efficient dual-mode luminescence of Eu3+ in lanthanides doped multifunctional NaGdF4 nanocrystals. Adv. Mater. 2010, 22, 3266–3271.

19

Liu, Y.; Tu, D.; Zhu, H.; Ma, E.; Chen, X. Lanthanide-doped luminescent nano-bioprobes: From fundamentals to biodetection. Nanoscale 2013, 5, 1369–1384.

20

Wang, F.; Deng, R.; Wang, J.; Wang, Q.; Han, Y.; Zhu, H.; Chen, X.; Liu, X. Tuning upconversion through energy migration in core–shell nanoparticles. Nat. Mater. 2011, 10, 968–973.

21

Su, Q.; Han, S.; Xie, X.; Zhu, H.; Chen, H.; Chen, C.-K.; Liu, R.-S.; Chen, X.; Wang, F.; Liu, X. The effect of surface coating on energy migration-mediated upconversion. J. Am. Chem. Soc. 2012, 134, 20849–20857.

22

Tu, D.; Liu, Y.; Zhu, H.; Chen, X. Optical/magnetic multimodal bioprobes based on lanthanide-doped inorganic nanocrystals. Chem. Eur. J. 2013, 19, 5516–5527.

23

Kar, A.; Patra, A. Impacts of core–shell structures on properties of lanthanide-based nanocrystals: Crystal phase, lattice strain, downconversion, upconversion and energy transfer. Nanoscale 2012, 4, 3608–3619.

24

Chen, F.; Bu, W.; Zhang, S.; Liu, J.; Fan, W.; Zhou, L.; Peng, W.; Shi, J. Gd3+-ion-doped upconversion nanoprobes: Relaxivity mechanism probing and sensitivity optimization. Adv. Funct. Mater. 2013, 23, 298–307.

25

Johnson, N. J. J.; Oakden, W.; Stanisz, G. J.; Prosser, R. S.; van Veggel, F. C. J. M. Size-tunable, ultrasmall NaGdF4 nanoparticles: Insights into their T1 MRI contrast enhancement. Chem. Mater. 2011, 23, 3714–3722.

26

Dong, C.; Korinek, A.; Blasiak, B.; Tomanek, B.; van Veggel, F. C. J. M. Cation exchange: A facile method to make NaYF4:Yb,Tm–NaGdF4 core–shell nanoparticles with a thin, tunable, and uniform shell. Chem. Mater. 2012, 24, 1297–1305.

27

Cheng, L.; Wang, C.; Liu, Z. Upconversion nanoparticles and their composite nanostructures for biomedical imaging and cancer therapy. Nanoscale 2013, 5, 23–37.

28

Liu, J.; Bu, W.; Pan, L.; Shi, J. NIR-triggered anticancer drug delivery by upconverting nanoparticles with integrated azobenzene-modified mesoporous silica. Angew. Chem. Int. Edit. 2013, 52, 4375–4379.

29

Wang, G.; Peng, Q.; Li, Y. Lanthanide-doped nanocrystals: Synthesis, optical-magnetic properties, and applications. Acc. Chem. Res. 2011, 44, 322–332.

30

Li, X.; Shen, D.; Yang, J.; Yao, C.; Che, R.; Zhang, F.; Zhao, D. Successive layer-by-layer strategy for multi-shell epitaxial growth: Shell thickness and doping position dependence in upconverting optical properties. Chem. Mater. 2013, 25, 106–112.

31

Li, Z. Q.; Zhang, Y. An efficient and user-friendly method for the synthesis of hexagonal-phase NaYF4:Yb,Er/Tm nanocrystals with controllable shape and upconversion fluorescence. Nanotechnology 2008, 19, 345606.

32

Pichaandi, J.; Boyer, J. C.; Delaney, K. R.; van Veggel, F. C. J. M. Two-photon upconversion laser (scanning and wide-field) microscopy using Ln3+-doped NaYF4 upconverting nanocrystals: A critical evaluation of their performance and potential in bioimaging. J. Phys. Chem. C 2011, 115, 19054–19064.

33

Johnson, N. J. J.; Korinek, A.; Dong, C.; van Veggel, F. C. J. M. Self-focusing by ostwald ripening: A strategy for layer-by-layer epitaxial growth on upconverting nanocrystals. J. Am. Chem. Soc. 2012, 134, 11068–11071.

34

Komban, R.; Klare, J. P.; Voss, B.; Nordmann, J.; Steinhoff, H. J.; Haase, M. An electron paramagnetic resonance spectroscopic investigation on the growth mechanism of NaYF4:Gd nanocrystals. Angew. Chem. Int. Edit. 2012, 51, 6506–6510.

35

Mai, H. X.; Zhang, Y. W.; Si, R.; Yan, Z. G.; Sun, L. D.; You, L. P.; Yan, C. H. High-quality sodium rare-earth fluoride nanocrystals: Controlled synthesis and optical properties. J. Am. Chem. Soc. 2006, 128, 6426–6436.

36

Dou, Q. Q.; Idris, N. M.; Zhang, Y. Sandwich-structured upconversion nanoparticles with tunable color for multiplexed cell labeling. Biomaterials 2013, 34, 1722–1731.

37

Abel, K. A.; Boyer, J. C.; Andrei, C. M.; van Veggel, F. C. J. M. Analysis of the shell thickness distribution on NaYF4/NaGdF4 core/shell nanocrystals by EELS and EDS. J. Phys. Chem. Lett. 2011, 2, 185–189.

38

Abel, K. A.; Boyer, J. C.; van Veggel, F. C. J. M. Hard proof of the NaYF4/NaGdF4 nanocrystal core/shell structure. J. Am. Chem. Soc. 2009, 131, 14644–14645.

39

Chen, G. Y.; Shen, J.; Ohulchanskyy, T. Y.; Patel, N. J.; Kutikov, A.; Li, Z. P.; Song, J.; Pandey, R. K.; Agren, H.; Prasad, P. N.; Han, G. (α-NaYbF4:Tm3+)/CaF2 core/shell nanoparticles with efficient near-infrared to near-infrared upconversion for high-contrast deep tissue bioimaging. ACS Nano 2012, 6, 8280–8287.

40

Garcia-Gutierrez, D.; Gutierrez-Wing, C.; Miki-Yoshida, M.; Jose-Yacaman, M. HAADF study of Au–Pt core–shell bimetallic nanoparticles. Appl. Phys. A 2004, 79, 481–487.

41

Zhang, F.; Che, R.; Li, X.; Yao, C.; Yang, J.; Shen, D.; Hu, P.; Li, W.; Zhao, D. Direct imaging the upconversion nanocrystal core/shell structure at the subnanometer level: Shell thickness dependence in upconverting optical properties. Nano Lett. 2012, 12, 2852–2858.

42

van Veggel, F. C. J. M.; Dong, C. H.; Johnson, N. J. J.; Pichaandi, J. Ln3+-doped nanoparticles for upconversion and magnetic resonance imaging: Some critical notes on recent progress and some aspects to be considered. Nanoscale 2012, 4, 7309–7321.

43

Park, Y.; Kim, H. M.; Kim, J. H.; Moon, K. C.; Yoo, B.; Lee, K. T.; Lee, N.; Choi, Y.; Park, W.; Ling, D.; et al. Theranostic probe based on lanthanide-doped nanoparticles for simultaneous in vivo dual-modal imaging and photodynamic therapy. Adv. Mater. 2012, 24, 5755–5761.

Publication history
Copyright

Publication history

Received: 17 April 2013
Revised: 16 May 2013
Accepted: 19 May 2013
Published: 15 June 2013
Issue date: August 2013

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013
Return