Journal Home > Volume 6 , Issue 8

Controllable growth of high-quality hybrid nanostructures is highly desirable for the fabrication of hierarchical, complex and multifunctional devices. Here, PdAg alloys have been controllably grown at different locations on gold nanorods, producing dumbbell-like nanostructures with PdAg at the ends of the gold nanorods or branched nanostructures with PdAg grown almost perpendicular to the gold nanorods. The nucleation sites of PdAg alloys on the gold nanorods can be effectively tuned by varying the concentrations of H2PdCl4, AgNO3 and cetyltrimethylammonium bromide (CTAB). The dumbbell-like and branched nanostructures were characterized by transmission electron microscopy (TEM), high-resolution TEM (HRTEM), line-scanning energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and UV–Vis absorption spectroscopy. Their electrocatalytic performance was evaluated using ethanol oxidation as a probe reaction. The dumbbell-like nanostructures show a better anti-poisoning performance, but a worse electrochemical activity than the branched ones. The results provide guidelines for the controlled growth of complicated nanostructures for either fundamental studies or potential applications.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Hybrid PdAg alloy–Au nanorods: Controlled growth, optical properties and electrochemical catalysis

Show Author's information Qiao Zhang1,2Xia Guo1Zhenxing Liang1,2Jianhuang Zeng1,2Jian Yang1,3( )Shijun Liao1,2( )
School of Chemistry and Chemical Engineering South China University of TechnologyGuangzhou 510640 China
Key Laboratory of Fuel Cell Technology of Guangdong ProvinceGuangzhou 510640 China
Department of Chemistry Shandong UniversityJinan 250100 China

Abstract

Controllable growth of high-quality hybrid nanostructures is highly desirable for the fabrication of hierarchical, complex and multifunctional devices. Here, PdAg alloys have been controllably grown at different locations on gold nanorods, producing dumbbell-like nanostructures with PdAg at the ends of the gold nanorods or branched nanostructures with PdAg grown almost perpendicular to the gold nanorods. The nucleation sites of PdAg alloys on the gold nanorods can be effectively tuned by varying the concentrations of H2PdCl4, AgNO3 and cetyltrimethylammonium bromide (CTAB). The dumbbell-like and branched nanostructures were characterized by transmission electron microscopy (TEM), high-resolution TEM (HRTEM), line-scanning energy-dispersive X-ray spectroscopy (EDS), X-ray photoelectron spectroscopy (XPS) and UV–Vis absorption spectroscopy. Their electrocatalytic performance was evaluated using ethanol oxidation as a probe reaction. The dumbbell-like nanostructures show a better anti-poisoning performance, but a worse electrochemical activity than the branched ones. The results provide guidelines for the controlled growth of complicated nanostructures for either fundamental studies or potential applications.

Keywords: optical properties, metals, nanostructures, hybrid materials, controlled growth, electrochemical catalysis

References(36)

1

Lim, B.; Jiang, M.; Camargo, P. H. C.; Cho, E. C.; Tao, J.; Lu, X.; Zhu, Y.; Xia, Y. N. Pd–Pt bimetallic nanodendrites with high actvity for oxygen reduction. Science 2009, 324, 1302–1306.

2

Lou, L.; Yu, K.; Zhang, Z. L.; Huang, R.; Zhu, J. Z.; Wang, Y. T.; Zhu, Z. Q. Dual-mode protein detection based on Fe3O4-Au hybrid nanoparticles. Nano Res. 2012, 5, 272–282.

3

Jiang, J.; Li, Y. Y.; Liu, J. P.; Huang, X. T.; Yuan, C. Z.; Lou, X. W. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 2012, 24, 5166–5180.

4

Luo, Y. S.; Luo, J. S.; Jiang, J.; Zhou, W. W.; Yang, H. P.; Qi, X. Y.; Zhuang, H.; Fan, H. J.; Yu, Y. W.; Li, C. M. et al. Seed-assisted synthesis of highly ordered TiO2@α-Fe2O3 core/shell arrays on carbon textiles for lithium-ion battery applications. Energy Environ. Sci. 2012, 5, 6559–6566.

5

DeSantis, C. J.; Sue, A. C.; Bower, M. M.; Skrabalak, S. E. Seed-mediated co-reduction: A versatile route to architecturally controlled bimetallic nanostructures. ACS Nano 2012, 6, 2617–2628.

6

Wetz, F.; Soulantica, K.; Falqui, A.; Respaud, M.; Snoeck, E.; Chaudret, B. Hybrid Co–Au nanorods: Controlling Au nucleation and location. Angew. Chem. Int. Ed. 2007, 46, 7079–7081.

7

Seo, D.; Yoo, C. II; Jung, J.; Song, H. Ag–Au–Ag heterometallic nanorods formed through directed anisotropic growth. J. Am. Chem. Soc. 2008, 130, 2940–2941.

8

Park, K.; Vaia, R. A. Synthesis of complex Au/Ag nanorods by controlled overgrowth. Adv. Mater. 2008, 20, 3882–3886.

9

Grzelczak, M.; Perez-Juste, J.; Garcia de Abajo, F. J.; Liz-Marzan, L. M. Optical properties of platinum-coated gold nanorods. J. Phys. Chem. C 2007, 111, 6183–6188.

10

Camargo, P. H. C.; Xiong, Y. J.; Ji, L.; Zuo, J. M.; Xia, Y. N. Facile synthesis of tadpole-like nanostructures consisting of Au heads and Pd tails. J. Am. Chem. Soc. 2007, 129, 15452–15453.

11

Wu, J. J.; Hou, Y. L.; Gao, S. Controlled synthesis and multifunctional properties of FePt–Au heterostructures. Nano Res. 2011, 4, 836–848.

12

Guo, X.; Zhang, Q.; Sun, Y. H.; Zhao, Q.; Yang, J. Lateral etching of core–shell Au@metal nanorods to metal- tipped Au nanorods with improved catalytic activity. ACS Nano 2012, 6, 1165–1175.

13

Peng, Z.; Yang, H. Synthesis and oxygen reduction electrocatalytic property of Pt-on-Pd bimetallic hetero-nanostructures. J. Am. Chem. Soc. 2009, 131, 7542–7543.

14

Zhang, K.; Hu, X.; Liu, J.; Yin, J.; Hou, S.; Wen, T.; He, W.; Ji, Y.; Guo, Y.; Wang, Q. et al. Formation of PdPt alloy nanodots on gold nanorods: Tuning oxidase-like activities via composition. Langmuir 2011, 27, 2796–2803.

15

Lim, B.; Jiang, M. J.; Yu, T.; Camargo, P. H. C.; Xia, Y. N. Nucleation and growth mechanisms for Pd–Pt bimetallic nanodendrites and their electrocatalytic properties. Nano Res. 2010, 3, 69–80.

16

Wang, D. S.; Li, Y. D. Bimetallic nanocrystals: Liquid-phase synthesis and catalytic applications. Adv. Mater. 2011, 23, 1044–1060.

17

Cortie, M. B.; McDonagh, A. M. Synthesis and optical properties of hybrid and alloy plasmonic nanoparticles. Chem. Rev. 2011, 111, 3713–3735.

18

Wang, D. S.; Peng, Q.; Li, Y. D. Nanocrystalline intermetallics and alloys. Nano Res. 2010, 3, 574–580.

19

Nikoobakht, B.; El-Sayed, M. A. Preparation and growth mechanism of gold nanorods using seed-mediated growth method. Chem. Mater. 2003, 15, 1957–1962.

20

Sau, T. K.; Murphy, C. J. Seeded high yield synthesis of short Au nanorods in aqueous solution. Langmuir 2004, 20, 6414–6420.

21

Dean, J. A. Electrolytes, Electromotive Force and Chemical Equilibrium. In Lange's Handbook of Chemistry, 15th Ed. McGraw-Hill Professional: New York, 1999.

22

Wagner, C. D.; Muilenberg, G. E. Standard ESCA Spectra of the Elements and Line Energy Information. In Handbook of X-ray Photoelectron Spectroscopy. Perking-Elmer Corporation: MN, 1979; pp 110, 112, 154.

23

Venezia, A. M.; Liotta, L. F.; Deganello, G.; Schay, Z.; Horvath, D.; Guczi, L. Catalytic CO oxidation over pumice supported Pd–Ag catalysts. Appl. Catal. A 2001, 211, 167–174.

24

Ma, Y.; Bansmann, J.; Diemant, T.; Behm, R. J. Formation, stability and CO adsorption properties of PdAg/Pd(111) surface alloys. Surf. Sci. 2009, 603, 1046–1054.

25

Liu, M. Z.; Guyot-Sionnest, P. Synthesis and optical characterization of Au/Ag core/shell nanorods. J. Phys. Chem. B 2004, 108, 5882–5888.

26

Link, S.; Mohamed, M. B.; El-Sayed, M. A. Simulation of the optical absorption spectra of gold nanorods as a function of their aspect ratio and the effect of the medium dielectric constant. J. Phys. Chem. B 1999, 103, 3073–3077.

27

Qiu, R.; Zhang, X. L.; Qiao, R.; Li, Y.; Kim, Y. II; Kang, Y. S. CuNi dendritic material: Synthesis, mechanism discussion, and application as glucose sensor. Chem. Mater. 2007, 19, 4174–4180.

28

Yao, T. T.; Zhao, Q.; Qiao, Z. P.; Peng, F.; Wang, H. J.; Yu, H.; Chi, C.; Yang, J. Chemical synthesis, structural characterization, optical properties, and photocatalytic activity of ultrathin ZnSe nanorods. Chem. Eur. J. 2011, 17, 8663–8670.

29

He, W. W.; Wu, X. C.; Liu, J. B.; Zhang, K.; Chu, W. G.; Feng, L. L.; Hu, X. N.; Zhou, W. Y.; Xie, S. S. Formation of AgPt alloy nanoislands via chemical etching with tunable optical and catalytic properties. Langmuir 2010, 26, 4443–4448.

30

He, W. W.; Wu, X. C.; Liu, J. B.; Zhang, K.; Chu, W. G.; Feng, L. L.; Hu, X. N.; Zhou, W. Y.; Xie, S. S. Pt-guide formation of Pt–Ag nanoislands on Au nanorods and improved methanol electro-oxidation. J. Phys. Chem. C 2009, 113, 10505–10510.

31

Xiang, Y. J.; Wu, X. C.; Liu, D. F.; Jiang, X. Y.; Chu, W. G.; Li, Z. Y.; Ma, Y.; Zhou, W. Y.; Xie, S. S. Formation of rectangularly shaped Pd/Au bimetallic nanorods: Evidence for competing growth of the Pd shell between the {110} and {100} side facets of Au nanorods. Nano Lett. 2006, 6, 2290–2294.

32

Du, W.; Mackenzie, K. E.; Milano, D. F.; Deskins, N. A.; Su, D.; Teng, X. Palladium–Tin alloyed catalysts for the ethanol oxidation reaction in an alkaline medium. ACS Catal. 2012, 2, 287–297.

33

Zhang, G. R.; Wu, J.; Xu, B. Q. Syntheses of Sub-30 nm Au@Pd concave nanocubes and Pt-on-(Au@Pd) trimetallic nanostructures as highly efficient catalysts for ethanol oxidation. J. Phys. Chem. C 2012, 116, 20839–20847.

34

Cui, C. H.; Yu, J. W.; Li, H. H.; Gao, M. R.; Liang, H. W.; Yu, S. H. Remarkable enhancement of electrocatalytic activity by tuning the interface of Pd–Au bimetllic nanoparticle tubes. ACS Nano 2011, 5, 4211–4218.

35

Kang, S. W.; Lee, Y. W.; Kim, M.; Hong, J. W.; Han, S. W. One-pot synthesis of carbon-supported dendritic Pd–Au nanoalloys for electrocatalytic ethanol oxidation. Chem. Asian J. 2011, 6, 909–913.

36

Li, G. L.; Jiang, L. H.; Jiang, Q.; Wang, S. L.; Sun, G. Q. Preparation and characterization of PdxAgy/C electrocatalysts for ethanol electrooxidation reaction in alkaline media. Electrochim. Acta 2011, 56, 7703–7711.

File
nr-6-8-571_ESM.pdf (434.8 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 February 2013
Revised: 10 May 2013
Accepted: 12 May 2013
Published: 08 June 2013
Issue date: August 2013

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Acknowledgements

Acknowledgements

This work was supported by the Natural Science Foundation of China (Nos. 20801019, 21071055, 21172076), New Century Excellent Talents in University (No. NCET-10-0369), Shandong Provincial Natural Science Foundation for Distinguished Young Scholar (No. JQ201205), Independent Innovation Foundations of Shandong University (No. 2012 ZD007), new-faculty start-up funding in Shandong University and Key Laboratory of Fuel Cell Technology of Guangdong Province.

Return