Journal Home > Volume 6 , Issue 7

The electrocatalytic activity for oxygen reduction reaction (ORR) at neutral pH of citrate-capped silver nanoparticles (diameter = 18 nm) supported on glassy carbon (GC) is investigated voltammetrically. Novelly, the modification of the substrate by nanoparticles sticking to form a random nanoparticle array and the voltammetric experiments are carried out simultaneously by immersion of the GC electrode in an air-saturated 0.1 M NaClO4 solution (pH = 5.8) containing chemically-synthesized nanoparticles.

The experimental voltammograms of the resulting nanoparticle array are simulated with homemade programs according to the two-proton, two-electron reduction of oxygen to hydrogen peroxide where the first electron transfer is rate determining. In the case of silver electrodes, the hydrogen peroxide generated is partially further reduced to water via heterogeneous decomposition.

Comparison of the results obtained on a silver macroelectrode and silver nanoparticles indicates that, for the silver nanoparticles and particle coverages (0.035%–0.457%) employed in this study, the ORR electrode kinetics is slower and the production of hydrogen peroxide larger on the glassy carbon-supported nanoparticles than on bulk silver.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Performance of silver nanoparticles in the catalysis of the oxygen reduction reaction in neutral media: Efficiency limitation due to hydrogen peroxide escape

Show Author's information Christopher C. M. NeumannEduardo LabordaKristina TschulikKristopher R. WardRichard G. Compton( )
Department of ChemistryPhysical and Theoretical Chemistry LaboratoryOxford UniversitySouth Parks RoadOxfordOX1 3QZUnited Kingdom

Abstract

The electrocatalytic activity for oxygen reduction reaction (ORR) at neutral pH of citrate-capped silver nanoparticles (diameter = 18 nm) supported on glassy carbon (GC) is investigated voltammetrically. Novelly, the modification of the substrate by nanoparticles sticking to form a random nanoparticle array and the voltammetric experiments are carried out simultaneously by immersion of the GC electrode in an air-saturated 0.1 M NaClO4 solution (pH = 5.8) containing chemically-synthesized nanoparticles.

The experimental voltammograms of the resulting nanoparticle array are simulated with homemade programs according to the two-proton, two-electron reduction of oxygen to hydrogen peroxide where the first electron transfer is rate determining. In the case of silver electrodes, the hydrogen peroxide generated is partially further reduced to water via heterogeneous decomposition.

Comparison of the results obtained on a silver macroelectrode and silver nanoparticles indicates that, for the silver nanoparticles and particle coverages (0.035%–0.457%) employed in this study, the ORR electrode kinetics is slower and the production of hydrogen peroxide larger on the glassy carbon-supported nanoparticles than on bulk silver.

Keywords: fuel cells, oxygen reduction reaction, nanoelectrocatalysis, silver nanoparticles, hydrogen peroxide escape

References(53)

1

Jiang, S.; Win, K. Y.; Liu, S. H.; Teng, C. P.; Zheng, Y. G.; Han, M. Y. Surface-functionalized nanoparticles for biosensing and imaging-guided therapeutics. Nanoscale 2013, 5, 3127–3148.

2

Santos, A.; Kumeria, T.; Losic, D. Nanoporous anodic aluminum oxide for chemical sensing and biosensors. Trac-Trends Anal. Chem. 2013, 44, 25–38.

3

Campbell, F. W.; Compton, R. G. The use of nanoparticles in electroanalysis: An updated review. Anal. Bioanal. Chem. 2010, 396, 241–259.

4

Majeed, K.; Jawaid, M.; Hassan, A.; Abu Bakar, A.; Abdul Khalil, H. P. S.; Salema, A. A.; Inuwa, I. Potential materials for food packaging from nanoclay/natural fibres filled hybrid composites. Mater. Des. 2013, 46, 391–410.

5

Zhang, L.; Zhang, J. J.; Wilkinson, D. P.; Wang, H. J. Progress in preparation of non-noble electrocatalysts for PEM fuel cell reactions. J. Power Sources 2006, 156, 171–182.

6

Tammeveski, L.; Erikson, H.; Sarapuu, A.; Kozlova, J.; Ritslaid, P.; Sammelselg, V.; Tammeveski, K. Electrocatalytic oxygen reduction on silver nanoparticle/multi-walled carbon nanotube modified glassy carbon electrodes in alkaline solution. Electrochem. Commun. 2012, 20, 15–18.

7

Han, J. J.; Li, N.; Zhang, T. Y. Ag/C nanoparticles as an cathode catalyst for a zinc-air battery with a flowing alkaline electrolyte. J. Power Sources 2009, 193, 885–889.

8

Yeager, E. Electrocatalysts for O2 reduction. Electrochim. Acta 1984, 29, 1527–1537.

9

Lim, D. H.; Wilcox, J. Mechanisms of the oxygen reduction reaction on defective graphene-supported Pt nanoparticles from first-principles. J. Phys. Chem. C 2012, 116, 3653–3660.

10

Yashtulov, N. A.; Revina, A. A.; Flid, V. R. The mechanism of oxygen catalytic reduction in the presence of platinum and silver nanoparticles. Russ. Chem. Bull. 2010, 59, 1488–1494.

11

Spendelow, J. S.; Wieckowski, A. Electrocatalysis of oxygen reduction and small alcohol oxidation in alkaline media. Phys. Chem. Chem. Phys. 2007, 9, 2654–2675.

12

Zhang, J.; Mo, Y.; Vukmirovic, M. B.; Klie, R.; Sasaki, K.; Adzic, R. R. Platinum monolayer electrocatalysts for O2 reduction: Pt monolayer on Pd(111) and on carbon-supported Pd nanoparticles. J. Phys. Chem. B 2004, 108, 10955–10964.

13

Appleby, A. J. Oxygen reduction and corrosion kinetics on phase-oxide-free palladium and silver electrodes as a function of temperature in 85% orthophosphoric acid. J. Electrochem. Soc. 1970, 117, 1373–1378.

14

Sánchez-Sánchez, C. M.; Bard, A. J. Hydrogen peroxide production in the oxygen reduction reaction at different electrocatalysts as quantified by scanning electrochemical microscopy. Anal. Chem. 2009, 81, 8094–8100.

15

Horrocks, B. R.; Schmidtke, D.; Heller, A.; Bard, A. J. Scanning electrochemical microscopy. 24. Enzyme ultramicroelectrodes for the measurement of hydrogen peroxide at surfaces. Anal. Chem. 1993, 65, 3605–3614.

16

Chatenet, M.; Genies-Bultel, L.; Aurousseau, M.; Durand, R.; Andolfatto, F. Oxygen reduction on silver catalysts in solutions containing various concentrations of sodium hydroxide-comparison with platinum. J. Appl. Electrochem. 2002, 32, 1131–1140.

17

Adanuvor, P. K.; White, R. E. Oxygen reduction on silver in 6.5M caustic soda solution. J. Electrochem. Soc. 1988, 135, 2509–2517.

18

Fuller, T.; Gasteiger, H. A.; Cleghorn, S.; Ramani, V.; Zhao, T.; Nguyen, T. V.; Haug, A.; Bock, C.; Lamy, C.; Ota, K. Proton Exchange Membrane Fuel Cells 7; The Electrochemical Society: Pennington, 2007.

19

Sethuraman, V. A.; Weidner, J. W.; Haug, A. T.; Pemberton, M.; Protsailo, L. V. Importance of catalyst stability vis-à-vis hydrogen peroxide formation rates in PEM fuel cell electrodes. Electrochim. Acta 2009, 54, 5571–5582.

20

Seidel, Y. E.; Schneider, A.; Jusys, Z.; Wickman, B.; Kasemo, B.; Behm, R. J. Mesoscopic mass transport effects in electrocatalytic processes. Faraday Discuss. 2009, 140, 167–184.

21

Ruvinskiy, P. S.; Bonnefont, A.; Pham-Huu, C.; Savinova, E. R. Using ordered carbon nanomaterials for shedding light on the mechanism of the cathodic oxygen reduction reaction. Langmuir 2011, 27, 9018–9027.

22

Zhang, Y. R.; Asahina, S.; Yoshihara, S.; Shirakashi, T. Oxygen reduction on Au nanoparticle deposited boron-doped diamond films. Electrochim. Acta 2003, 48, 741–747.

23

Uchida, H.; Yano, H.; Wakisaka, M.; Watanabe, M. Electrocatalysis of the oxygen reduction reaction at Pt and Pt-alloys. Electrochemistry 2011, 79, 303–311.

24

Jiang, L.; Hsu, A.; Chu, D.; Chen, R. Size-dependent activity of palladium nanoparticles for oxygen electroreduction in alkaline solutions. J. Electrochem. Soc. 2009, 156, B643–B649.

25

Chen, S. L.; Kucernak, A. Electrocatalysis under conditions of high mass transport rate: Oxygen reduction on single submicrometer-sized Pt particles supported on carbon. J. Phys. Chem. B 2004, 108, 3262–3276.

26

Antoine, O.; Bultel, Y.; Durand, R. Oxygen reduction reaction kinetics and mechanism on platinum nanoparticles inside Nafion. J. Electroanal. Chem. 2001, 499, 85–94.

27

Lim, E. J.; Choi, S. M.; Seo, M. H.; Kim, Y.; Lee, S.; Kim, W. B. Highly dispersed Ag nanoparticles on nanosheets of reduced graphene oxide for oxygen reduction reaction in alkaline media. Electrochem. Commun. 2013, 28, 100–103.

28

Singh, P.; Buttry, D. A. Comparison of oxygen reduction reaction at silver nanoparticles and polycrystalline silver electrodes in alkaline solution. J. Phys. Chem. C 2012, 116, 10656–10663.

29

Garcia, A. C.; Gasparotto, L. H. S.; Gomes, J. F.; Tremiliosi-Filho, G. Straightforward synthesis of carbon-supported Ag nanoparticles and their application for the oxygen reduction reaction. Electrocatal. 2012, 3, 147–152.

30

Demarconnay, L.; Coutanceau, C.; Léger, J. M. Electroreduction of dioxygen (ORR) in alkaline medium on Ag/C and Pt/C nanostructured catalysts-effect of the presence of methanol. Electrochim. Acta 2004, 49, 4513–4521.

31

Alia, S. M.; Duong, K.; Liu, T.; Jensen, K.; Yan, Y. Supportless silver nanowires as oxygen reduction reaction catalysts for hydroxide-exchange membrane fuel cells. ChemSusChem 2012, 5, 1619–1624.

32
Toh, H. S.; Batchelor-McAuley, C.; Tschulik, K.; Uhlemann, M.; Crossley, A.; Compton, R. G. The anodic stripping voltammetry of nanoparticles: Electrochemical evidence for the surface agglomeration of silver nanoparticles. Nanoscale, in press, DOI: 10.1039/C3NR00898C.https://doi.org/10.1039/c3nr00898c
DOI
33

Davies, T. J.; Compton, R. G. The cyclic and linear sweep voltammetry of regular and random arrays of microdisc electrodes: Theory. J. Electroanal. Chem. 2005, 585, 63–82.

34

Ward, K. R.; Lawrence, N. S.; Hartshorne, R. S.; Compton, R. G. Cyclic voltammetry of the EC' mechanism at hemispherical particles and their arrays: The split wave. J. Phys. Chem. C 2011, 115, 11204–11215.

35

Ward, K. R.; Lawrence, N. S.; Hartshorne, R. S.; Compton, R. G. The theory of cyclic voltammetry of electrochemically heterogeneous surfaces: Comparison of different models for surface geometry and applications to highly ordered pyrolytic graphite. Phys. Chem. Chem. Phys. 2012, 14, 7264–7275.

36

Wang, Y.; Ward, K. R.; Laborda, E.; Salter, C.; Crossley, A.; Jacobs, R. M. J.; Compton, R. G. A joint experimental and computational search for authentic nano-electrocatalytic effects: Electrooxidation of nitrite and L-ascorbate on gold nanoparticle-modified glassy carbon electrodes. Small 2013, 9, 478–486.

37

Augustine, R.; Rajarathinam, K. Synthesis and characterization of silver nanoparticles and its immobilization on alginate coated sutures for the prevention of surgical wound infections and the in vitro release studies. Int. J. Nano Dim. 2012, 2, 205–212.

38

Zhou, Y. G.; Rees, N. V.; Compton, R. G. Electrode-nanoparticle collisions: The measurement of the sticking coefficient of silver nanoparticles on a glassy carbon electrode. Chem. Phys. Lett. 2011, 514, 291–293.

39

Ward Jones, S. E.; Campbell, F. W.; Baron, R.; Xiao, L.; Compton, R. G. Particle size and surface coverage effects in the stripping voltammetry of silver nanoparticles: Theory and experiment. J. Phys. Chem. C 2008, 112, 17820–17827.

40

Divišek, J.; Kastening, B. Electrochemical generation and reactivity of the superoxide ion in aqueous solutions. J. Electroanal. Chem. Interfacial Electrochem. 1975, 65, 603–621.

41

Sawyer, D. T. Electrochemistry for Chemists, 2nd Ed.; Wiley-Interscience: New York, 1995.

42

Bard, A. J.; Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications, 2nd Ed.; John Wiley & Sons, Inc. : New York, 2001.

43

Compton, R. G.; Banks, C. E. Understanding Voltammetry, 2nd Ed.; World Scientific: London, 2011.

DOI
44

Millero, F. J.; Huang, F.; Graham, T. B. Solubility of oxygen in some 1-1, 2-1, 1-2, and 2-2 electrolytes as a function of concentration at 25℃. J. Solution. Chem. 2003, 32, 473–487.

45

Han, P.; Bartels, D. M. Temperature dependence of oxygen diffusion in H2O and D2O. J. Phys. Chem. 1996, 100, 5597–5602.

46

Hitt, D. L.; Zakrzwski, C. M.; Thomas, M. A. MEMS-based satellite micropropulsion via catalyzed hydrogen peroxide decomposition. Smart Mater. Struct. 2001, 10, 1163–1175.

47

Goszner, K.; Körner, D.; Hite, R. On the catalytic activity of silver: I. activity, poisoning, and regeneration during the decomposition of hydrogen peroxide. J. Catal. 1972, 25, 245–253.

48

Fox, M. A.; Akaba, R. Curve crossing in the cyclic voltammetric oxidation of 2-phenylnorbornene. Evidence for an ECE reaction pathway. J. Am. Chem. Soc. 1983, 105, 3460–3463.

49

Merkulova, N. D.; Zhutaeva, G. V.; Shumilova, N. A.; Bagotzky, V. S. Reactions of hydrogen peroxide on a silver electrode in alkaline solution. Electrochim. Acta 1973, 18, 169–174.

50

Amatore, C.; Savéant, J. M.; Tessier, D. Charge transfer at partially blocked surfaces: A model for the case of microscopic active and inactive sites. J. Electroanal. Chem. Interfacial Electrochem. 1983, 147, 39–51.

51

Reller, H.; Kirowa-Eisner, F.; Gileadi, E. Ensembles of microelectrodes: A digital-simulation. J. Electroanal. Chem. Interfacial Electrochem. 1982, 138, 65–77.

52

Press, W. H.; Teukolsky, S. A.; Vetterling, W. T.; Flannery, B. P. Numerical Recipes: The Art of Scientific Computing, 3rd Ed.; Cambridge University Press: Cambridge, 2007.

53

Wang, Y.; Laborda, E.; Ward, K. R.; Compton, R. G. Kinetic study of oxygen reduction reaction on electrodeposited gold nanoparticles of diameter 17 nm and 40 nm in 0.5 M sulfuric acid. Submitt. 2013.

File
nr-6-7-511_ESM.pdf (410.3 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 04 May 2013
Accepted: 09 May 2013
Published: 08 June 2013
Issue date: July 2013

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Acknowledgements

Acknowledgements

E. L. thanks the Fundación Seneca de la Region de Murcia (Spain) for financial support.

Return