Journal Home > Volume 6 , Issue 7

Graphene mesh electrodes (GMEs) with good conductivity and transparency have been fabricated by the standard industrial photolithography and O2 plasma etching process using graphene solutions. Organic photovoltaic (OPV) cells using GMEs as the transparent electrodes with a blend of poly-(3-hexylthiophene)/phenyl-C61-butyric acid methyl ester (P3HT/PC61BM) as the active layer have been fabricated and exhibit a power conversion efficiency (PCE) of 2.04%, the highest PCE for solution-processed graphene transparent electrode-based solar cells reported to date.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Solution-processable graphene mesh transparent electrodes for organic solar cells

Show Author's information Qian Zhang1Xiangjian Wan1Fei Xing2Lu Huang1Guankui Long1Ningbo Yi1Wang Ni1Zhibo Liu2Jianguo Tian2Yongsheng Chen1( )
Key Laboratory for Functional Polymer Materials and Centre for Nanoscale Science and TechnologyInstitute of Polymer ChemistryCollege of ChemistryNankai UniversityTianjin300071China
The Key Laboratory of Weak Light Nonlinear PhotonicsMinistry of EducationTeda Applied Physics School and School of PhysicsNankai UniversityTianjin300071China

Abstract

Graphene mesh electrodes (GMEs) with good conductivity and transparency have been fabricated by the standard industrial photolithography and O2 plasma etching process using graphene solutions. Organic photovoltaic (OPV) cells using GMEs as the transparent electrodes with a blend of poly-(3-hexylthiophene)/phenyl-C61-butyric acid methyl ester (P3HT/PC61BM) as the active layer have been fabricated and exhibit a power conversion efficiency (PCE) of 2.04%, the highest PCE for solution-processed graphene transparent electrode-based solar cells reported to date.

Keywords: graphene, photolithography, transparent electrode, mesh electrode, organic photovoltaic cells

References(39)

1

Li, G.; Shrotriya, V.; Huang, J. S.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 2005, 4, 864-868.

2

Boehme, M.; Charton, C. Properties of ITO on PET film in dependence on the coating conditions and thermal processing. Surf. Coat. Technol. 2005, 200, 932-935.

3

Andersson, A.; Johansson, N.; Broms, P.; Yu, N.; Lupo, D.; Salaneck, W. R. Fluorine tin oxide as an alternative to indium tin oxide in polymer LEDs. Adv. Mater. 1998, 10, 859-863.

DOI
4

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666-669.

5

Avouris, P.; Chen, Z.; Perebeinos, V. Carbon-based electronics. Nat. Nanotechnol. 2007, 2, 605-615.

6

Geim, A. Graphene: Status and prospects. Science 2009, 324, 1530-1534.

7

Sui, D.; Huang, Y.; Huang, L.; Liang, J.; Ma, Y.; Chen, Y. Flexible and transparent electrothermal film heaters based on graphene materials. Small 2011, 7, 3186-3192.

8

Liang, J.; Huang, Y.; Zhang, L.; Wang, Y.; Ma, Y.; Guo, T.; Chen, Y. Molecular-level dispersion of graphene into poly(vinyl alcohol) and effective reinforcement of their nanocomposites. Adv. Funct. Mater. 2009, 19, 2297-2302.

9

Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008, 3, 270-274.

10

Wan, X.; Huang, Y.; Chen, Y. Focusing on energy and optoelectronic applications: A journey for graphene and graphene oxide at large scale. Acc. Chem. Res. 2012, 45, 598-607.

11

Wan, X.; Long, G.; Huang, L.; Chen, Y. Graphene-A promising material for organic photovoltaic cells. Adv. Mater. 2011, 23, 5342-5358.

12

Huang, X.; Zeng, Z.; Fan, Z.; Liu, J.; Zhang, H. Graphene-based electrodes. Adv. Mater. 2012, 24, 5979-6004.

13

He, Q.; Wu, S.; Yin, Z.; Zhang, H. Graphene-based electronic sensors. Chem. Sci. 2012, 3, 1764-1772.

14

Huang, X.; Qi, X.; Boeyab, F.; Zhang, H. Graphene-based composites. Chem. Soc. Rev. 2012, 41, 666-686.

15

Xu, Y.; Long, G.; Huang, L.; Huang, Y.; Wan, X.; Ma, Y.; Chen, Y. Polymer photovoltaic devices with transparent graphene electrodes produced by spin-casting. Carbon 2010, 48, 3308-3311.

16

Wu, J.; Becerril, H. A.; Bao, Z.; Liu, Z.; Chen, Y.; Peumans, P. Organic solar cells with solution-processed graphene transparent electrodes. Appl. Phys. Lett. 2008, 92, 263302.

17

Eda, G.; Lin, Y. Y.; Miller, S.; Chen, C. W.; Su, W. F.; Chhowalla, M. Transparent and conducting electrodes for organic electronics from reduced graphene oxide. Appl. Phys. Lett. 2008, 92, 233305

18

Tung, V. C.; Chen, L. M.; Allen, M. J.; Wassei, J. K.; Nelson, K.; Kaner, R. B.; Yang, Y. Low-temperature solution processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors. Nano Lett. 2009, 9, 1949-1955.

19

Yin, Z.; Sun, S.; Salim, T.; Wu, S.; Huang, X.; He, Q.; Lam, Y. M.; Zhang, H. Organic photovoltaic devices using highly flexible reduced graphene oxide films as transparent electrodes. ACS Nano 2010, 4, 5263-5268.

20

Geng, J.; Liu, L.; Yang, S. B.; Youn, S. C.; Kim, D. W.; Lee, J. S.; Choi, J. K.; Jung, H. T. A simple approach for preparing transparent conductive graphene films using the controlled chemical reduction of exfoliated graphene oxide in an aqueous suspension. J. Phys. Chem. C 2010, 114, 14433-14440.

21

Pang, S.; Tsao, H. N.; Feng, X.; Müellen, K. Patterned graphene electrodes from solution-processed graphite oxide films for organic field-effect transistors. Adv. Mater. 2009, 21, 3488-3491.

22

Wang, X.; Zhi, L.; Müllen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 2008, 8, 323-327.

23

Wu, J.; Agrawal, M.; Becerril, H. A.; Bao, Z.; Liu, Z.; Chen, Y.; Peumans, P. Organic light-emitting diodes on solution-processed graphene transparent electrodes. ACS Nano 2010, 4, 43-48.

24

De Arco, L. G.; Zhang, Y.; Schlenker, C. W.; Ryu, K.; Thompson, M. E.; Zhou, C. Continuous, highly flexible, and transparent graphene dilms by chemical vapor deposition for organic photovoltaics. ACS Nano 2010, 4, 2865-2873.

25

Choe, M.; Lee, B. H.; Jo, G.; Park, J.; Park, W.; Lee, S.; Hong, W. K.; Seong, M. J.; Kahng, Y. H.; Lee, K.; et al. Efficient bulk-heterojunction photovoltaic cells with transparent multi-layer graphene electrodes. Org. Electron. 2010, 11, 1864-1869.

26

Choi, Y. Y.; Kang, S. J.; Kim, H. K.; Choi, W. M.; Na, S. I. Multilayer graphene films as transparent electrodes for organic photovoltaic devices. Sol. Energ. Mat. Sol. C 2012, 96, 281-285.

27

Wang, Y.; Chen, X.; Zhong, Y.; Zhu, F.; Loh, K. P. Large area, continuous, few-layered graphene as anodes in organic photovoltaic devices. Appl. Phys. Lett. 2009, 95, 063302.

28

Wang, Y.; Tong, S. W.; Xu, X. F.; Öezyilmaz, B.; Loh, K. P. Interface engineering of layer-by-layer stacked graphene anodes for high-performance organic solar cells. Adv. Mater. 2011, 23, 1514-1518.

29

Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706-710.

30

Zhu, Y.; Sun, Z.; Yan, Z.; Jin, Z.; Tour, J. M. Rational design of hybrid graphene films for high-performance transparent electrodes. ACS Nano 2011, 5, 6472-6479.

31

Lin, P.; Choy, W. H.; Zhang, D.; Xie, F.; Xin, J.; Leung, C. W. Semitransparent organic solar cells with hybrid monolayer graphene/metal grid as top electrodes. Appl. Phys. Lett. 2013, 102, 113303.

32

Liu, J.; Yin, Z.; Cao, X.; Zhao, F.; Wang, L.; Huang, W.; Zhang, H. Fabrication of flexible, all-reduced graphene oxide non-volatile memory devices. Adv. Mater. 2013, 25, 233-238.

33

Liu, J.; Lin, Z.; Liu, T.; Yin, Z.; Zhou, X.; Chen, S.; Xie, L.; Boey, F.; Zhang, H.; Huang, W. Multilayer stacked low-temperature-reduced graphene oxide films: Preparation, characterization, and application in polymer memory devices. Small 2010, 6, 1536-1542.

34

Kang, M. G.; Kim, M. S.; Kim, J.; Guo, L. Organic solar cells using nanoimprinted transparent metal electrodes. Adv. Mater. 2008, 20, 4408-4413.

35

Lee, J. Y.; Connor, S. T.; Cui, Y.; Peumans, P. Solution-processed metal nanowire mesh transparent electrodes. Nano Lett. 2008, 8, 689-692.

36

Hecht, D. S.; Hu, L.; Irvin, G. Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures. Adv. Mater. 2011, 23, 1482-1513.

37

Yang, L.; Zhang, T.; Zhou, H.; Price, S. C.; Wiley, B. J.; You, W. Solution-processed flexible polymer solar cells with silver nanowire electrodes. ACS Appl. Mater. Interfaces 2011, 3, 4075-4084.

38

Zeng, Z.; Huang, X.; Yin, Z.; Li, H.; Chen, Y.; Li, H.; Zhang, Q.; Ma, J.; Boey, F.; Zhang, H. Fabrication of graphene nanomesh by using an anodic aluminum oxide membrane as a template. Adv. Mater. 2012, 24, 4138-4142

39

Zhang, L.; Liang, J.; Huang, Y.; Ma, Y.; Wang, Y.; Chen, Y. Size-controlled synthesis of graphene oxide sheets on a large scale using chemical exfoliation. Carbon 2009, 47, 3365-3368

File
nr-6-7-478_ESM.pdf (408.9 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 March 2013
Revised: 18 April 2013
Accepted: 18 April 2013
Published: 06 May 2013
Issue date: July 2013

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Acknowledgements

Acknowledgements

The authors gratefully acknowledge the financial support from the Ministry of Science and Technology of the People's Republic of China (Grants Nos. 2012CB933401 and 2011DFB50300), the National Natural Science Foundation of China (Grants Nos. 51273093 and 50933003) and Natural Science Foundation of Tianjin (Grant No. 10ZCGHHZ00600).

Return