Journal Home > Volume 6 , Issue 6

We present novel Schottky barrier field effect transistors consisting of a parallel array of bottom-up grown silicon nanowires that are able to deliver high current outputs. Axial silicidation of the nanowires is used to create defined Schottky junctions leading to on/off current ratios of up to 106. The device concept leverages the unique transport properties of nanoscale junctions to boost device performance for macroscopic applications. Using parallel arrays, on-currents of over 500 μA at a source-drain voltage of 0.5 V can be achieved. The transconductance is thus increased significantly while maintaining the transfer characteristics of single nanowire devices. By incorporating several hundred nanowires into the parallel array, the yield of functioning transistors is dramatically increased and deviceto-device variability is reduced compared to single devices. This new nanowirebased platform provides sufficient current output to be employed as a transducer for biosensors or a driving stage for organic light-emitting diodes (LEDs), while the bottom-up nature of the fabrication procedure means it can provide building blocks for novel printable electronic devices.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Parallel arrays of Schottky barrier nanowire field effect transistors: Nanoscopic effects for macroscopic current output

Show Author's information Sebastian Pregl1,2Walter M. Weber2( )Daijiro Nozaki1Jens Kunstmann1Larysa Baraban1( )Joerg Opitz3Thomas Mikolajick2,4Gianaurelio Cuniberti1,5
Institute for Materials Science and Max Bergmann Center of BiomaterialsTU DresdenDresden01062Germany
NaMLab GmbHDresden01187Germany
Fraunhofer Institute IZFP DresdenDresden01109Germany
Institute for Semiconductors and Microsystems TechnologyTU DresdenDresden01187Germany
Division of IT Convergence EngineeringPOSTECH, PohangKorea

Abstract

We present novel Schottky barrier field effect transistors consisting of a parallel array of bottom-up grown silicon nanowires that are able to deliver high current outputs. Axial silicidation of the nanowires is used to create defined Schottky junctions leading to on/off current ratios of up to 106. The device concept leverages the unique transport properties of nanoscale junctions to boost device performance for macroscopic applications. Using parallel arrays, on-currents of over 500 μA at a source-drain voltage of 0.5 V can be achieved. The transconductance is thus increased significantly while maintaining the transfer characteristics of single nanowire devices. By incorporating several hundred nanowires into the parallel array, the yield of functioning transistors is dramatically increased and deviceto-device variability is reduced compared to single devices. This new nanowirebased platform provides sufficient current output to be employed as a transducer for biosensors or a driving stage for organic light-emitting diodes (LEDs), while the bottom-up nature of the fabrication procedure means it can provide building blocks for novel printable electronic devices.

Keywords: silicon nanowire, effective Schottky barrier lowering, parallel array, electric field enhancement, output current amplification

References(42)

1

Duan, X.; Niu, C.; Sahi, V.; Chen, J.; Parce, J. W.; Empedocles, S.; Goldman, J. L. High-performance thin-film transistors using semiconductor nanowires and nanoribbons. Nature 2003, 425, 274–278.

2

Wang, D.; Sheriff, B. A.; McAlpine, M.; Heath, J. R. Development of ultra-high density silicon nanowire arrays for electronics applications. Nano Res. 2008, 1, 9–21.

3

Heinzig, A.; Slesazeck, S.; Kreupl, F.; Mikolajick, T.; Weber, W. M. Reconfigurable silicon nanowire transistors. Nano Lett. 2012, 12, 119–124.

4

Tang, W.; Dayeh, A. S.; Picraux, S. T.; Huang, J. Y.; Tu, T. -K. Ultrashort channel silicon nanowire transistors with nickel silicide source/drain contacts. Nano Lett. 2012, 12, 3979–3985.

5

Weisse, J. M.; Lee, C. H.; Kim, D. R.; Zheng, X. Fabrication of flexible and vertical silicon nanowire electronics. Nano Lett. 2012, 12, 3339–3343.

6

Qian, F.; Gradecak, S.; Li, Y.; Wen, C.; Lieber, C. M. Core/multishell nanowire heterostructures as multicolor, high-efficiency light-emitting diodes. Nano Lett. 2005, 5, 2287–2291.

7

Knoch, J.; Zhang, M.; Appenzeller, J.; Mantl, S. Physics of ultrathin-body silicon-on-insulator Schottky-barrier field-effect transistors. Appl. Phys. A 2007, 87, 351–357.

8

Dellas, N. S.; Schuh, C. J.; Mohney, S. E. Silicide formation in contacts to Si nanowires. J. Mater. Sci. 2012, 47, 6189–6205.

9

Tarasov, A.; Wipf, M.; Bedner, K.; Kurz, J.; Fu, W.; Guzenko, V. A.; Knopfmacher, O.; Stoop, R. L.; Calame, M.; Schöenenberger, C. True reference nanosensor realized with silicon nanowires. Langmuir 2012, 28, 9899–9905.

10

Zheng, G.; Gao, X. P. A.; Lieber, C. M. Frequency domain detection of biomolecules using silicon nanowire biosensors. Nano Lett. 2010, 10, 3179–3183.

11

Zheng, G.; Patolsky, F.; Cui, Y.; Wang, W. U.; Lieber, C. M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 2005, 23, 1294–1301.

12

Zaremba-Tymieniecki, M.; Durrani, Z. A. K. Schottky-barrier lowering in silicon nanowire field-effect transistors prepared by metal-assisted chemical etching. Appl. Phys. Lett. 2011, 98, 102113.

13

Lake, R.; Klimeck, G.; Bowen, R.; Jovanovic, D.; Blanks, D.; Swaminathan, M. Quantum transport with band-structure and Schottky contacts. Phys. Stat. Sol. (b) 1997, 204, 354–357.

DOI
14

Werner, J. H.; Güttler, H. H. Barrier inhomogeneities at Schottky contacts. J. Appl. Phys. 1991, 69, 1522–1533.

15

Feste, S. F.; Zhang, M.; Knoch, J.; Mantl, S. Impact of variability on the performance of SOI Schottky barrier MOSFETs. Solid-State Electron. 2009, 53, 418–423.

16

Tsaur, B. -Y.; Silversmith, D. J.; Mountain, R. W.; Anderson C. H. Jr. Effects of interface structure on the electrical characteristics of PtSi–Si Schottky barrier contacts. Thin Solid Films 1982, 93, 331–340.

17

Talin, A. A.; Hunter, L. L.; Leonard, F.; Rokad, B. Large area, dense silicon nanowire array chemical sensors. Appl. Phys. Lett. 2006, 89, 153102.

18

Lee, M.; Jeon, Y.; Moon, T.; Kim, S. Top-down fabrication of fully CMOS-compatible silicon nanowire arrays and their integration into CMOS inverters on plastic. ACS Nano 2011, 5, 2629–2636.

19

Fan, Z.; Ho, J. C.; Jacobson, Z. A.; Yerushalmi, R.; Alley, R. L.; Razavi, H.; Javey, A. Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing. Nano Lett. 2008, 8, 20–25

20

Wu, Y.; Cui, Y.; Huynh, L.; Barrelet, C. J.; Bell, D. C.; Lieber, C. M. Controlled growth and structures of molecular-scale silicon nanowires. Nano Lett. 2004, 4, 433–436.

21

Yu, J.; Chung, S.; Heath, J. R. Silicon nanowires: Preparation, device fabrication, and transport properties. J. Phys. Chem. B 2000, 104, 11864–11870.

22

Schmidt, V.; Senz, S.; Gösele, U. Diameter-dependent growth direction of epitaxial silicon nanowires. Nano Lett. 2005, 5, 931–935.

23

Kotov, N. A.; Dekany, I.; Fendler, J. H. Layer-by-layer self-assembly of polyelectrolyte–semiconductor nanoparticle composite films. J. Phys. Chem. 1995, 99, 13065–13069.

24

Weber, W. M.; Duesberg, G. S.; Graham, A. P.; Liebau, M.; Unger, E.; Cheze, C.; Geelhaar, L.; Lugli, P.; Riechert, H.; Kreupl, F. Silicon nanowires: Catalytic growth and electrical characterization. Phys. Stat. Sol. (b) 2006, 243, 3340–3345.

25

Dellas, N. S.; Liu, B. Z.; Eichfeld, S. M.; Eichfeld, C. M.; Mayer, T. S.; Mohney, S. E. Orientation dependence of nickel silicide formation in contacts to silicon nanowires. J. Appl. Phys. 2009, 105, 094309.

26

Olowolafe, J. O.; Nicolet, M. A.; Mayer, J. W. Influence of the nature of the Si substrate on nickel silicide formed from thin Ni films. Thin Solid Films 1976, 38, 143–150.

27

Ogata, K.; Sutter, E.; Zhu, X.; Hofmann, S. Ni-silicide growth kinetics in Si and Si/SiO2 core/shell nanowires. Nanotechnology 2011, 22, 365305.

28

Weber, W. M.; Geelhaar, L.; Unger, E.; Cheze, C.; Kreupl, F.; Riechert, H.; Lugli, P. Silicon to nickel-silicide axial nanowire heterostructures for high performance electronics. Phys. Stat. Sol. (b) 2007, 244, 4170–4175.

29

Weber, W. M.; Graham, A. P.; Duesberg, G. S.; Liebau, M.; Cheze, C.; Geelhaar, L.; Unger, E.; Pamler, W.; Hoenlein, W.; Riechert, H.; et al. Non-linear gate length dependence of on-current in Si–nanowire FETs. In Proceedings of the 36th European Solid-State Device Research Conference (ESSDERC), Montreux, Switzerland, 2006, pp 423–426.

30

Martin, D.; Heinzig, A.; Grube, M.; Geelhaar, L.; Mikolajick, T.; Riechert, H.; Weber, W. M. Direct probing of Schottky barriers in Si nanowire Schottky barrier field effect transistors. Phys. Rev. Lett. 2011, 107, 216807.

31

Weber, W. M.; Geelhaar, L.; Graham, A. P.; Unger, E.; Duesberg, G. S.; Liebau, M.; Pamler, W.; Chèze, C.; Riechert, H.; Lugli, P.; et al. Silicon–nanowire transistors with intruded nickel-silicide contacts. Nano Lett. 2006, 6, 2660–2666.

32

Sze, S. M.; Ng, K. K. Physics of Semiconductor Devices; John Wiley & Sons: New York, 2006.

DOI
33

Park, H. -H.; Park, S. Y.; Hong Shick, M.; Park, H. -Y. Seonghoon, J. Investigation of noise in silicon nanowire transistors through quantum simulations. In Proceedings of the International Conference on Simulation of Semiconductor Processes and Devices (SISPAD 2008), Hakone, Japan, 2008, pp 73–76.

34

Mookerjea, S.; Mohata, D.; Krishnan, R.; Singh, J.; Vallett, A.; Ali, A.; Mayer, T.; Narayanan, V.; Schlom, D.; Liu, A. Experimental demonstration of 100 nm channel length In0.53Ga0.47As-based vertical inter-band tunnel field effect transistors (TFETs) for ultra low-power logic and SRAM applications. In Proceedings of IEEE International Conference on Electron Devices Meeting (IEDM 2009), Baltimore, USA, 2009, pp 949–951.

35

Bhuwalka, K. K.; Schulze, J.; Eisele, I. Scaling the vertical tunnel FET with tunnel bandgap modulation and gate workfunction engineering. IEEE Trans. Electron Devices 2005, 52, 909–917.

36

Yang, C.; Barrelet, C. J.; Capasso, F.; Lieber, C. M. Single p-type/intrinsic/n-type silicon nanowires as nanoscale avalanche photodetectors. Nano Lett. 2006, 6, 2929–2934.

37

Tove, P. A. Methods of avoiding edge effects on semiconductor diodes. J. Phys. D Appl. Phys. 1982, 15, 517–536.

38

Cao, Q.; Kim, H. -S.; Pimparkar, N.; Kulkarni, J. P.; Wang, C.; Shim, M.; Roy, K.; Alam, M. A.; Rogers, J. A. Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature 2008, 454, 495–500.

39

Kocabas, C.; Pimparkar, N.; Yesilyurt, O.; Kang, S. J.; Alam, M. A.; Rogers, J. A. Experimental and theoretical studies of transport through large scale, partially aligned arrays of single-walled carbon nanotubes in thin film type transistors. Nano Lett. 2007, 7, 1195–1202.

40

Zschieschang, U.; Kang, M. J.; Takimiya, K.; Sekitani, T.; Someya, T.; Canzler, T. W.; Werner, A.; Blochwitz-Nimoth, J.; Klauk, H. Flexible low-voltage organic thin-film transistors and circuits based on C10-DNTT. J. Mater. Chem. 2012, 22, 4273–4277.

41

Zhang, M.; Knoch, J.; Zhang, S.; Feste, S.; Schroeter, M.; Mantl, S. Threshold voltage variation in SOI Schottky-barrier MOSFETs. IEEE Trams. Electron Device 2008, 55, 858–865.

42

Zhang, M.; Knoch, J.; Zhao, Q. T.; Lenk, S.; Breuer, U.; Mantl, S. Schottky barrier height modulation using dopant segregation in Schottky-barrier SOI–MOSFETs. In: Proceedings of European Solid-State Device Research Conference (ESSDERC 2005), Grenoble, France, 2005, pp 457–460.

File
nr-6-6-381_ESM.pdf (537.9 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 January 2013
Revised: 01 April 2013
Accepted: 02 April 2013
Published: 10 May 2013
Issue date: June 2013

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Acknowledgements

Acknowledgements

We acknowledge support from the European Union (European Social Fund) and the Free State of Saxony (Sächsische Aufbaubank) in the young researcher group "InnovaSens" (SAB-Nr. 080942409) and from the German Excellence Initiative via the Cluster of Excellence 1056 "Center for Advancing Electronics Dresden" (cfAED). G. C. further acknowledges the World Class University program sponsored by the South Korean Ministry of Education, Science, and Technology Program, Project No. R31-2008-000-10100-0. We thank A. Jahn, Ali Ghaemi, and Nora Haufe from TU Dresden and I. Mönch from IFW Dresden for helpful discussions and assistance in the experimental procedures.

Return