Journal Home > Volume 6 , Issue 5

When spins are injected through graphene layers from a transition metal ferromagnet, high spin polarization can be achieved. When detected by another ferromagnet, the spin-polarized current makes high- and low-resistance states in a ferromagnet/graphene/ferromagnet junction. Here, we report manifest spin valve effects from room temperature to 10 K in junctions comprising NiFe electrodes and an interlayer made of double-layer or single-layer graphene grown by chemical vapor deposition. We have found that the spin valve effect is stronger with double-layer graphene than with single-layer graphene. The ratio of relative magnetoresistance increases from 0.09% at room temperature to 0.14% at 10 K for single-layer graphene and from 0.27% at room temperature to 0.48% at 10 K for double-layer graphene. The spin valve effect is perceived to retain the spin-polarized transport in the vertical direction and the hysteretic nature of magnetoresistance provides the basic functionality of a memory device. We have also found that the junction resistance decreases monotonically as temperature is lowered and the current–voltage characteristics show linear behaviour. These results revealed that a graphene interlayer works not as a tunnel barrier but rather as a conducting thin film between two NiFe electrodes.


menu
Abstract
Full text
Outline
About this article

Spin valve effect of NiFe/graphene/NiFe junctions

Show Author's information Muhammad Zahir IqbalMuhammad Waqas IqbalJae Hong LeeYong Seung KimSeung-Hyun ChunJonghwa Eom( )
Department of Physics and Graphene Research Institute Sejong UniversitySeoul 143-747 Korea

Abstract

When spins are injected through graphene layers from a transition metal ferromagnet, high spin polarization can be achieved. When detected by another ferromagnet, the spin-polarized current makes high- and low-resistance states in a ferromagnet/graphene/ferromagnet junction. Here, we report manifest spin valve effects from room temperature to 10 K in junctions comprising NiFe electrodes and an interlayer made of double-layer or single-layer graphene grown by chemical vapor deposition. We have found that the spin valve effect is stronger with double-layer graphene than with single-layer graphene. The ratio of relative magnetoresistance increases from 0.09% at room temperature to 0.14% at 10 K for single-layer graphene and from 0.27% at room temperature to 0.48% at 10 K for double-layer graphene. The spin valve effect is perceived to retain the spin-polarized transport in the vertical direction and the hysteretic nature of magnetoresistance provides the basic functionality of a memory device. We have also found that the junction resistance decreases monotonically as temperature is lowered and the current–voltage characteristics show linear behaviour. These results revealed that a graphene interlayer works not as a tunnel barrier but rather as a conducting thin film between two NiFe electrodes.

Keywords: spintronics, grapheme, magnetoresistance, spin valve, magnetic junction

References(26)

1

Tombros, N.; Jozsa, C.; Popinciuc, M.; Jonkman, H. T.; van Wees, B. J. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 2007, 448, 571–574.

2

Tran, T. L. A.; Le, T. Q.; Sanderink, J. G. M.; van der Wiel, W. G.; de Jong, M. P. The multistep tunneling analogue of conductivity mismatch in organic spin valves. Adv. Funct. Mater. 2012, 22, 1180–1189.

3

Kirwan, D. F.; de Menezes, V. M.; Rocha, C. G.; Costa, A. T.; Muniz, R. B.; Fagan, S. B.; Ferreira, M. S. Enhanced spin-valve effect in magnetically doped carbon nanotubes. Carbon 2009, 47, 2533–2537.

4

Karpan, V. M.; Giovannetti, G.; Khomyakov, P. A.; Talanana, M.; Starikov, A. A.; Zwierzycki, M.; van den Brink, J.; Brocks, G.; Kelly, P. J. Graphite and graphene as perfect spin filters. Phys. Rev. Lett. 2007, 99, 176602.

5

Karpan, V. M.; Khomyakov, P. A.; Starikov, A. A.; Giovannetti, G.; Zwierzycki, M.; Talanana, M.; Brocks, G.; van den Brink, J.; Kelly, P. J. Theoretical prediction of perfect spin filtering at interfaces between close-packed surfaces of Ni or Co and graphite or graphene. Phys. Rev. B 2008, 78, 195419.

6

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

7

Son, Y. W.; Cohen, M. L.; Louie, S. G. Half-metallic graphene nanoribbons. Nature 2006, 444, 347–349.

8

Kim, W. Y.; Kim, K. S. Prediction of very large values of magnetoresistance in a graphene nanoribbon device. Nat. Nanotechnol. 2008, 3, 408–412.

9

Nishioka, M.; Goldman, A. M. Spin transport through multilayer graphene. Appl. Phys. Lett. 2007, 90, 252505.

10

Cho, S. J.; Chen, Y. F.; Fuhrer, M. S. Gate-tunable graphene spin valve. Appl. Phys. Lett. 2007, 91, 123105.

11

Goto, H.; Kanda, A.; Sato, T.; Tanaka, S.; Ootuka, Y.; Odaka, S.; Miyazaki, H. T.; Tsukagoshi, K.; Aoyagi, Y. Gate control of spin transport in multilayer graphene. Appl. Phys. Lett. 2008, 92, 212110.

12

Wang, W. H.; Pi, K.; Li, Y.; Chiang, Y. F.; Wei, P.; Shi, J.; Kawakami, R. K. Magnetotransport properties of mesoscopic graphite spin valves. Phys. Rev. B 2008, 77, 020402.

13

Yoo, J. W.; Chen, C. Y.; Jang, H. W.; Bark, C. W.; Prigodin, V. N.; Eom, C. B.; Epstein, A. J. Spin injection/detection using an organic-based magnetic semiconductor. Nat. Mater. 2010, 9, 638–642.

14

Schulz, L.; Nuccio, L.; Willis, M.; Desai, P.; Shakya, P.; Kreouzis, T.; Malik, V. K.; Bernhard, C.; Pratt, F. L.; Morley, N. A. et al. Engineering spin propagation across a hybrid organic/inorganic interface using a polar layer. Nat. Mater. 2011, 10, 39–44.

15

Pantel, D.; Goetze, S.; Hesse, D.; Alexe, M. Reversible electrical switching of spin polarization in multiferroic tunnel junctions. Nat. Mater. 2012, 11, 289–293.

16

Britnell, L.; Gorbachev, R. V.; Jalil, R.; Belle, B. D.; Schedin, F.; Mishchenko, A.; Georgiou, T.; Katsnelson, M. I.; Eaves, L.; Morozov, S. V. et al. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 2012, 335, 947–950.

17

Cobas, E.; Friedman, A. L.; van't Erve, O. M. J.; Robinson, J. T.; Jonker, B. T. Graphene as a tunnel barrier: Graphene-based magnetic tunnel junctions. Nano Lett. 2012, 12, 3000–3004.

18

Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.

19

Xue, Y. Z.; Wu, B.; Guo, Y. L.; Huang, L. P.; Jiang, L.; Chen, J. Y.; Geng, D. C.; Liu, Y. Q.; Hu, W. P.; Yu, G. Synthesis of large-area, few-layer graphene on iron foil by chemical vapor deposition. Nano Res. 2011, 4, 1208–1214.

20

Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S. et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

21

Ni, Z. H.; Wang, Y. Y.; Yu, T.; Shen, Z. X. Raman spectroscopy and imaging of graphene. Nano Res. 2008, 1, 273–291.

22

Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S.; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C. et al. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008, 3, 210–215.

23

Mohiuddin, T. M. G.; Hill, E. W.; Elias, D.; Zhukov, A. A.; Novoselov, K. S.; Geim, A. K. Graphene in multilayered CPP spin valves. IEEE T. Magn. 2008, 44, 2624–2627.

24

Akerman, J. J.; Roshchin, I. V.; Slaughter, J. M.; Dave, R. W.; Schuller, I. K. Origin of temperature dependence in tunneling magnetoresistance. Europhys. Lett. 2003, 63, 104–110.

25

Shang, C. H.; Nowak, J.; Jansen, R.; Moodera, J. S. Temperature dependence of magnetoresistance and surface magnetization in ferromagnetic tunnel junctions. Phys. Rev. B 1998, 58, R2917–R2920.

26

Parkin, S.; Kaiser, C.; Panchula, A.; Rice, P.; Huges, B.; Samant, M.; Yang, S. H. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 2004, 3, 862–867

Publication history
Copyright
Acknowledgements

Publication history

Received: 11 February 2013
Revised: 31 March 2013
Accepted: 31 March 2013
Published: 16 April 2013
Issue date: May 2013

Copyright

© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2013

Acknowledgements

Acknowledgements

This work was supported by Nano-Material Technology Development Program (No. 2012M3A7B4049888), Priority Research Centers Program (No. 2012-0005859), and Mid-career Researcher Program (No. 2010-0010861) through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology. This work was also supported by Converging Research Center Program through the Ministry of Education, Science and Technology (No. 2012K001310).

Return