Journal Home > Volume 6 , Issue 5

Electronic structure and transport properties of highly defective two-dimensional (2D) sp2 graphene are investigated theoretically. Classical molecular dynamics are used to generate large graphene planes containing a considerable amount of defects. Then, a tight-binding Hamiltonian validated by ab initio calculations is constructed in order to compute quantum transport within a real-space order-N Kubo–Greenwood approach. In contrast to pristine graphene, the highly defective sp2 carbon sheets exhibit a high density of states at the charge neutrality point raising challenging questions concerning the electronic transport of associated charge carriers. The analysis of the electronic wavepacket dynamics actually reveals extremely strong multiple scattering effects giving rise to mean free paths as low as 1 nm and localization phenomena. Consequently, highly defective graphene is envisioned as a remarkable prototype of 2D Anderson insulating materials.


menu
Abstract
Full text
Outline
About this article

Highly defective graphene: A key prototype of two-dimensional Anderson insulators

Show Author's information Aurélien Lherbier1( )Stephan Roche2,3Oscar A. Restrepo4Yann-Michel Niquet5Arnaud Delcorte4Jean-Christophe Charlier1
Université catholique de Louvain (UCL) Institute of Condensed Matter and Nanoscience (IMCN) NAPS-ETSF, Chemin des étoiles 8Louvain-la-Neuve 1348 Belgium
CIN2 (ICN-CSIC) and Universitat Autónoma de Barcelona Catalan Institute of Nanotechnology, Campus UABBellaterra (Barcelona) 08193 Spain
ICREA Institució Catalana de Recerca i Estudis AvançatsBarcelona 08070 Spain
Université catholique de Louvain (UCL) Institute of Condensed Matter and Nanoscience (IMCN), BSMA, Place Croix du Sud 1 (Boltzmann)Louvain-la-Neuve 1348 Belgium
L_Sim, SP2M, UMR-E CEA/UJF-Grenoble 1 INAC, 17 rue des MartyrsGrenoble Cedex 9 38054 France

Abstract

Electronic structure and transport properties of highly defective two-dimensional (2D) sp2 graphene are investigated theoretically. Classical molecular dynamics are used to generate large graphene planes containing a considerable amount of defects. Then, a tight-binding Hamiltonian validated by ab initio calculations is constructed in order to compute quantum transport within a real-space order-N Kubo–Greenwood approach. In contrast to pristine graphene, the highly defective sp2 carbon sheets exhibit a high density of states at the charge neutrality point raising challenging questions concerning the electronic transport of associated charge carriers. The analysis of the electronic wavepacket dynamics actually reveals extremely strong multiple scattering effects giving rise to mean free paths as low as 1 nm and localization phenomena. Consequently, highly defective graphene is envisioned as a remarkable prototype of 2D Anderson insulating materials.

Keywords: graphene, localization, electronic transport, Anderson insulators

References(45)

1

Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. -H.; Kim, P.; Choi, J. -Y.; Hong, B. H. Large-scale pattern growth of graphene films for stretchable transparent electrodes. Nature 2009, 457, 706–710.

2

Novoselov, K. S. Nobel lecture: Graphene: Materials in the flatland. Rev. Mod. Phys. 2011, 83, 837–849.

3

de Heer, W. A.; Berger, C.; Wu, X.; First, P. N.; Conrad, E. H.; Li, X.; Li, T.; Sprinkle, M.; Hass, J.; Sadowski, M. L.; Potemski, M.; Martinez, G. Epitaxial graphene. Solid State Commun. 2007, 143, 92–100.

4

Wang, X.; Zhi, L.; Müllen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 2008, 8, 323–327.

5

Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J. -S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I.; et al. Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat. Nanotechnol. 2010, 5, 574–578.

6

Ferreira, A.; Xu, X.; Tan, C. -L.; Bae, S. -K.; Peres, N. M. R.; Hong, B. -H.; Özyilmaz, B.; Neto, A. H. C. Transport properties of graphene with one-dimensional charge defects. EPL 2011, 94, 28003–28008.

7

Krasheninnikov, A. V.; Banhart, F. Engineering of nano-structured carbon materials with electron or ion beams. Nat. Mater. 2007, 6, 723–733.

8

Banhart, F.; Kotakoski, J.; Krasheninnikov, A. V. Structural defects in graphene. ACS Nano 2011, 5, 26–41.

9

Cockayne, E.; Rutter, G. M.; Guisinger, N. P.; Crain, J. N.; First, P. N.; Stroscio, J. A. Grain boundary loops in graphene. Phys. Rev. B 2011, 83, 195425.

10

Botello-Méndez, A. R.; Declerck, X.; Terrones, M.; Terrones, H.; Charlier, J. -C. One-dimensional extended lines of divacancy defects in graphene. Nanoscale 2011, 3, 2868–2872.

11

Lusk, M. T.; Wu, D. T.; Carr, L. D. Graphene nano-engineering and the inverse Stone–Thrower–Wales defect. Phys. Rev. B 2010, 81, 155444.

12

Yazyev, O. V.; Louie, S. G. Electronic transport in polycrystalline graphene. Nat. Mater. 2010, 9, 806–809.

13

Lherbier, A.; Dubois, S. M. -M.; Declerck, X.; Roche, S.; Niquet, Y. M.; Charlier, J. -C. Two-dimensional graphene with structural defects: Elastic mean free path, minimum conductivity, and Anderson transition. Phys. Rev. Lett. 2011, 106, 046803.

14

Kotakoski, J.; Krasheninnikov, A. V.; Kaiser, U.; Meyer, J. C. From point defects in graphene to two-dimensional amorphous carbon. Phys. Rev. Lett. 2011, 106, 105505.

15

Kapko, V.; Drabold, D. A.; Thorpe, M. F. Electronic structure of a realistic model of amorphous graphene. Phys. Stat. Solidi B 2010, 247, 1197–1200.

16

Li, Y.; Inam, F.; Kumar, A.; Thorpe, M. F.; Drabold, D. A. Pentagonal puckering in a sheet of amorphous graphene. Phys. Status. Solidi B 2011, 248, 2082–2086.

17

Holmström, E.; Fransson, J.; Eriksson, O.; Lizárraga, R.; Sanyal, B.; Bhandary, S.; Katsnelson, M. I. Disorder-induced metallicity in amorphous graphene. Phys. Rev. B 2011, 84, 205414.

18

Tuan, D. V.; Kumar, A.; Roche, S.; Ortmann, F.; Thorpe, M. F.; Ordejon, P. Insulating behavior of an amorphous graphene membrane. Phys. Rev. B 2012, 86, 121408.

19

Brenner, D. W.; Shenderova, O. A.; Harrison, J. A.; Stuart, S. J.; Ni, B.; Sinnott, S. B. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. Condes. Matter. 2002, 14, 783–802.

20

Stuart, S. J.; Tutein, A. B.; Harrison, J. A. A reactive potential for hydrocarbons with intermolecular interactions. J. Chem. Phys. 2000, 112, 6472–6486.

21

Hoffmann, R.; Alder, R. W.; Wilcox, C. F. Planar tetracoordinate carbon. J. Am. Chem. Soc. 1970, 92, 4992–4993.

22

Ajayan, P. M.; Ravikumar, V.; Charlier, J. -C. Surface reconstructions and dimensional changes in single-walled carbon nanotubes. Phys. Rev. Lett. 1998, 81, 1437–1440.

23

Wang, B.; Puzyrev, Y.; Pantelides, S. T. Strain enhanced defect reactivity at grain boundaries in polycrystalline graphene. Carbon 2011, 49, 3983–3988.

24

Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L.; et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 2010, 5, 722–726.

25

Xue, J.; Sanchez-Yamagishi, J.; Bulmash, D.; Jacquod, P.; Deshpande, A.; Watanabe, K.; Taniguchi, T.; Jarillo-Herrero, P.; Leroy, B. J. Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride. Nat. Mater. 2011, 10, 282–285.

26

Pereira, V. M.; Neto, A. H. C.; Peres, N. M. R. Tight-binding approach to uniaxial strain in graphene. Phys. Rev. B 2009, 80, 045401.

27

Lherbier, A.; Dubois, S. M. -M.; Declerck, X.; Niquet, Y. M.; Roche, S.; Charlier, J. -C. Transport properties of graphene containing structural defects. Phys. Rev. B 2012, 86, 075402.

28

Lherbier, A.; Biel, B.; Niquet, Y. M.; Roche, S. Transport length scales in disordered graphene-based materials: Strong localization regimes and dimensionality effects. Phys. Rev. Lett. 2008, 100, 036803.

29

Roche, S.; Mayou, D. Conductivity of quasiperiodic systems: A numerical study. Phys. Rev. Lett. 1997, 79, 2518–2521.

30

Roche, S. Quantum transport by means of O(N) real-space methods. Phys. Rev. B 1999, 59, 2284–2291.

31

Ishii, H.; Triozon, F.; Kobayashi, N.; Hirose, K.; Roche, S. Charge transport in carbon nanotubes based materials: A Kubo–Greenwood computational approach. C. R. Phys. 2009, 10, 283–296.

32

Leconte, N.; Moser, J.; Ordejón, P.; Tao, H.; Lherbier, A.; Bachtold, A.; Alsina, F.; Torres, C. M. S.; Charlier, J. -C.; Roche, S. Damaging graphene with ozone treatment: A chemically tunable metal-insulator transition. ACS Nano 2010, 4, 4033–4038.

33

Radchenko, T. M.; Shylau, A. A.; Zozoulenko, I. V. Influence of correlated impurities on conductivity of graphene sheets: Time-dependent real-space Kubo approach. Phys. Rev. B 2012, 86, 035418.

34

Tan, Y. -W.; Zhang, Y.; Bolotin, K.; Zhao, Y.; Adam, S.; Hwang, E. H.; Das Sarma, S.; Stormer, H. L.; Kim, P. Measurement of scattering rate and minimum conductivity in graphene. Phys. Rev. Lett. 2007, 99, 246803.

35

Shon, N. H.; Ando, T. Quantum transport in two-dimensional graphite system. J. Phys. Soc. Jpn. 1998, 67, 2421–2429.

36

Peres, N. M. R.; Guinea, F.; Neto, A. H. C. Electronic properties of disordered two-dimensional carbon. Phys. Rev. B 2006, 73, 125411.

37

Ostrovsky, P. M.; Gornyi, I. V.; Mirlin, A. D. Electron transport in disordered graphene. Phys. Rev. B 2006, 74, 235443.

38

Nomura, K.; MacDonald, A. H. Quantum transport of massless Dirac fermions. Phys. Rev. Lett. 2007, 98, 076602.

39

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

40

Lee, P. A.; Ramakrishnan, T. V. Disordered electronic systems. Rev. Mod. Phys. 1985, 57, 287–337.

41

Lherbier, A.; Blase, X.; Niquet, Y. M.; Triozon, F.; Roche, S. Charge transport in chemically doped 2D graphene. Phys. Rev. Lett. 2008, 101, 036808.

42

Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 87401.

43

Casiraghi, C.; Hartschuh, A.; Qian, H.; Piscanec, S.; Georgi, C.; Fasoli, A.; Novoselov, K. S.; Basko, D. M.; Ferrari, A. C. Raman spectroscopy of graphene edges. Nano Lett. 2009, 9, 1433–1441.

44

Liu, G.; Teweldebrhan, D.; Balandin, A. A. Tuning of graphene properties via controlled exposure to electron beams. IEEE Trans. Nanotechnol. 2011, 10, 865–870.

45

Teweldebrhan, D.; Balandin, A. A. Modification of graphene properties due to electron beam irradiation. Appl. Phys. Lett. 2009, 94, 013101.

Publication history
Copyright
Acknowledgements

Publication history

Received: 03 December 2012
Revised: 15 March 2013
Accepted: 16 March 2013
Published: 12 April 2013
Issue date: May 2013

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Acknowledgements

Acknowledgements

J. -C. C., A. D., and A. L. acknowledge financial support from the Belgium FNRS. S. R. acknowledges the Spanish Ministry for financial support through the project MAT2012-33911. This work is connected to the ARC Graphene Nano-electromechanics (N.° 11/16-037), the ETSF e-I3 project (N.° 211956), and the NANOSIM-GRAPHENE (ANR-09-NANO-016-01). Computational resources are provided by the UCL-CISM. Free access to the SPUT code was granted by Prof. B. J. Garrison.

Return