Journal Home > Volume 6 , Issue 5

Imaging sentinel lymph nodes (SLN) could provide us with critical information about the progression of a cancerous disease. Real-time high-resolution intraoperative photoacoustic imaging (PAI) in conjunction with a near-infrared (NIR) probe may offer opportunities for the immediate imaging for direct identification and resection of SLN or collecting tissue samples. In this work a commercially amenable synthetic methodology is revealed for fabricating luminescent carbon nanoparticles with rapid clearance properties. A one-pot "green" technique is pursued, which involved rapid surface passivation of carbon nanoparticles with organic macromolecules (e.g., polysorbate, polyethyleneglycol) in solvent-free conditions. Interestingly, the naked carbon nanoparticles are derived for the first time, from commercial food grade honey. Surface coated particles are markedly smaller (~7 nm) than previously explored particles (gold, single-walled carbon nanotubes, copper) for SLN imaging. The results indicate an exceptionally rapid signal enhancement (~2 min) of the SLN. Owing to their strong optical absorption in the NIR region, tiny size and rapid lymphatic transport, this platform offers great potential for faster resection of SLN and may lower complications caused in axillary investigation by mismarking with dyes or low-resolution imaging techniques.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A green synthesis of carbon nanoparticles from honey and their use in real-time photoacoustic imaging

Show Author's information Lina Wu1,2,§Xin Cai3,§Kate Nelson4Wenxin Xing3Jun Xia3Ruiying Zhang3Allen J. Stacy1Micah Luderer1Gregory M. Lanza1Lihong V. Wang3( )Baozhong Shen2( )Dipanjan Pan1( )
C-TRAIN and Division of Cardiology Washington University School of Medicine 4320 Forest Park AvenueSaint Louis MO 63108 USA
Key Laboratory of Molecular Imaging in College of Heilongjiang Province Department of Radiology the 4th Affiliated Hospital of Harbin Medical UniversityHarbin 150001 China
Optical Imaging Laboratory, Department of Biomedical Engineering Washington University in St. Louis One Brookings Drive, Campus Box 1097St. Louis MO 63130 USA
Nano Research Facility (NNIN-NSF) Washington University in St. Louis St. Louis MO 63130 USA

§These authors contributed equally to this work

Abstract

Imaging sentinel lymph nodes (SLN) could provide us with critical information about the progression of a cancerous disease. Real-time high-resolution intraoperative photoacoustic imaging (PAI) in conjunction with a near-infrared (NIR) probe may offer opportunities for the immediate imaging for direct identification and resection of SLN or collecting tissue samples. In this work a commercially amenable synthetic methodology is revealed for fabricating luminescent carbon nanoparticles with rapid clearance properties. A one-pot "green" technique is pursued, which involved rapid surface passivation of carbon nanoparticles with organic macromolecules (e.g., polysorbate, polyethyleneglycol) in solvent-free conditions. Interestingly, the naked carbon nanoparticles are derived for the first time, from commercial food grade honey. Surface coated particles are markedly smaller (~7 nm) than previously explored particles (gold, single-walled carbon nanotubes, copper) for SLN imaging. The results indicate an exceptionally rapid signal enhancement (~2 min) of the SLN. Owing to their strong optical absorption in the NIR region, tiny size and rapid lymphatic transport, this platform offers great potential for faster resection of SLN and may lower complications caused in axillary investigation by mismarking with dyes or low-resolution imaging techniques.

Keywords: contrast agents, photoacoustic tomography, carbon nanoparticle, honey, real-time imaging

References(43)

1

Wang, X. D.; Pang, Y. J.; Ku, G.; Xie, X. Y.; Stoica, G.; Wang, L. V. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat. Biotechnol. 2003, 21, 803–806.

2

Jokerst, J. V.; Thangaraj, M.; Kempen, P. J.; Sinclair, R.; Gambhir, S. S. Photoacoustic imaging of mesenchymal stem cells in living mice via silica-coated gold nanorods. ACS Nano. 2012, 6, 5920–5930.

3

Wang, L. V.; Hu, S. Photoacoustic tomography: In vivo imaging from organelles to organs. Science 2012, 335, 1458–1462.

4

Pan, D.; Pramanik, M.; Wickline, S. A.; Wang, L. V.; Lanza, G. M. Recent advances in colloidal gold nanobeacons for molecular photoacoustic imaging. Contrast Media Mol. Imaging 2011, 6, 378–388.

5

Chen, Z. Y.; Ma, L. J.; Liu, Y.; Chen, C. Y. Applications of functionalized fullerenes in tumor theranostics. Theranostics 2012, 2, 238–250.

6

de la Zerda, A.; Liu, Z.; Bodapati, S.; Teed, R.; Vaithilingam, S.; Khuri-Yakub, B. T.; Chen, X. Y.; Dai, H. J.; Gambhir, S. S. Ultrahigh sensitivity carbon nanotube agents for photoacoustic molecular imaging in living mice. Nano Lett. 2010, 10, 2168–72.

7

Li, M. L.; Oh, J. T.; Xie, X.; Ku, G.; Wang, W.; Li, C.; Lungu, G.; Stoica, G.; Wang, L. V. Simultaneous molecular and hypoxia imaging of brain tumors in vivo using spectroscopic photoacoustic tomography. Proc. IEEE 2008, 96, 481–489.

8

Wang, X. D.; Xie, X. Y.; Ku, G.; Wang, L. V.; Stoica, G. Noninvasive imaging of hemoglobin concentration and oxygenation in the rat brain using high-resolution photoacoustic tomography. J. Biomed. Opt. 2006, 11, 024015.

9

Pan, D.; Pramanik, M.; Senpan, A.; Allen, J. S.; Zhang, H. Y.; Wickline, S. A.; Wang, L. V.; Lanza, G. M. Molecular photoacoustic imaging of angiogenesis with integrin-targeted gold nanobeacons. FASEB J. 2011, 25, 875–882.

10

Pan, D.; Pramanik, M.; Senpan, A.; Ghosh, S.; Wickline, S. A.; Wang, L. V.; Lanza, G. M. Near infrared photoacoustic detection of sentinel lymph nodes with gold nanobeacons. Biomaterials 2010, 31, 4088–4093.

11

Schneider, B. P.; Miller, K. D. Angiogenesis of breast cancer. J. Clin. Oncol. 2005, 23, 1782–1790.

12

Agarwal, A.; Huang, S. W.; O'Donnell, M.; Day, K. C.; Day, M.; Kotov, N. A.; Ashkenazi, S. Targeted gold nanorod contrast agent for prostate cancer detection by photoacoustic imaging. J. Appl. Phys. 2007, 102, 064701.

13

de la Zerda, A.; Zavaleta, C.; Keren, S.; Vaithilingam, S.; Bodapati, S.; Liu, Z.; Levi, J.; Smith, B. R.; Ma, T. J.; Oralkan, O.; Cheng, Z.; Chen, X. Y.; Dai, H. J.; Khuri-Yakub, B. T.; Gambhir, S. S. Carbon nanotubes as photoacoustic molecular imaging agents in living mice. Nat. Nanotechnol. 2008, 3, 557–562.

14

Pan, D.; Cai, X.; Yalaz, C.; Senpan, A.; Omanakuttan, K.; Wickline, S. A.; Wang, L. V.; Lanza, G. M. Photoacoustic sentinel lymph node imaging with self-assembled copper neodecanoate nanoparticles. ACS Nano. 2012, 6, 1260–1267.

15

Jose, J.; Grootendorst, D. J.; Vijn, T. W.; Wouters, M. W.; van Boven, H.; van Leeuwen, T. G.; Steenbergen, W.; Ruers, T. J. M.; Manohar, S. Initial results of imaging melanoma metastasis in resected human lymph nodes using photoacoustic computed tomography. J. Biomed. Opt. 2011, 16, 096021.

16

Purushotham, A. D.; Upponi, S.; Klevesath, M. B.; Bobrow, L.; Millar, K.; Myles, J. P.; Duffy, S. W. Morbidity after sentinel lymph node biopsy in primary breast cancer: Results from a randomized controlled trial. J. Clin. Oncol. 2005, 23, 4312–4321.

17

Krag, D. N.; Anderson, S. J.; Julian, T. B.; Brown, A. M.; Harlow, S. P.; Costantino, J. P.; Ashikaga, T.; Weaver, D. L.; Mamounas, E. P.; Jalovec, L. M. et al. Sentinel-lymph-node resection compared with conventional axillary-lymph-node dissection in clinically node-negative patients with breast cancer: Overall survival findings from the NSABP B-32 randomised phase 3 trial. Lancet Oncol. 2010, 11, 927–933.

18

Krag, D.; Weaver, D.; Ashikaga, T.; Moffat, F.; Klimberg, V. S.; Shriver, C.; Feldman, S.; Kusminsky, R.; Gadd, M.; Kuhn, J. et al. The sentinel node in breast cancer-A multicenter validation study. N. Eng. J. Med. 1998, 339, 941–946.

19

McMasters, K. M.; Tuttle, T. M.; Carlson, D. J. Sentinel lymph node biopsy for breast cancer: A suitable alternative to routine axillary dissection in multi-institutional practice when optimal technique is used. J. Clin. Oncol. 2000, 18, 2560–2566.

20

Zhang, H. F.; Maslov, K.; Stoica, G.; Wang, L. V. Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging. Nat. Biotechnol. 2006, 24, 848–851.

21

Song, K. H.; Stein, E. W.; Margenthaler, J. A.; Wang, L. V. Noninvasive photoacoustic identification of sentinel lymph nodes containing methylene blue in vivo in a rat model. J. Biomed. Opt. 2008, 13, 054033.

22

Li, P. C.; Wang, C. R. C.; Shieh, D. B.; Wei, C. W.; Liao, C. K.; Poe, C.; Jhan, S.; Ding, A. A.; Wu, Y. N. In vivo photoacoustic molecular imaging with simultaneous multiple selective targeting using antibody-conjugated gold nanorods. Opt. Express 2008, 16, 18605–18615.

23

Wang, Z. J.; Wu, L. N.; Cai, W. Size-tunable synthesis of monodisperse water-soluble gold nanoparticles with high X-ray attenuation. Chem. Eur. J. 2010, 16, 1459–1463.

24

Pramanik, M.; Swierczewska, M.; Green, D.; Sitharaman, V.; Wang, L. V. Single-walled carbon nanotubes as a multimodal-thermoacoustic and photoacoustic-contrast agent. J. Biomed. Opt. 2009, 14, 034018.

25

de la Zerda, A.; Bodapati, S.; Teed, R.; May, S. Y.; Tabakman, S. M.; Liu, Z.; Khuri-Yakub, B. T.; Chen, X. Y.; Dai, H. J.; Gambhir, S. S. Family of enhanced photoacoustic imaging agents for high-sensitivity and multiplexing studies in living mice. ACS Nano 2012, 6, 4694–4701.

26

Hu, Z. Y.; Pantoş, G. D.; Kuganathan, N.; Arrowsmith, R. L.; Jacobs, R. M. J.; Kociok-Köhn, G.; O'Byrne, J.; Jurkschat, K.; Burgos, P.; Tyrrell, R. M. et al. Interactions between amino acid-tagged naphthalenediimide and single walled carbon nanotubes for the design and construction of new bioimaging probes. Adv. Funct. Mater. 2012, 22, 503–518.

27

Liu, Z.; Tabakman, S. M.; Chen, Z.; Dai, H. J. Preparation of carbon nanotube bioconjugates for biomedical applications. Nature Protoc. 2009, 4, 1372–1381.

28

Sohrabnezhad, S.; Pourahmad, A.; Sadjadi, M. A. New methylene blue incorporated in mordenite zeolite as humidity sensor material. Mater. Lett. 2007, 61, 2311–2314.

29

Xie, J.; Lee, S.; Chen, S. Y. Nanoparticle-based theranostic agents. Adv. Drug Deliv. Rev. 2010, 62, 1064–1079.

30

Brewer, G. J. Copper toxicity in the general population. Clin. Neurophysiol. 2010, 121, 459–460.

31

Schipper, M. L.; Nakayama-Ratchford, N.; Davis, C. R.; Kam, N. W. S.; Chu, P.; Liu, Z.; Sun, X. M.; Dai, H. J.; Gambhir, S. S. A pilot toxicology study of single-walled carbon nanotubes in a small sample of mice. Nat Nanotechnol. 2008, 3, 216–221.

32

Yang, S. T.; Luo, J. B.; Zhou, Q. H.; Wang, H. F. Pharmacokinetics, metabolism and toxicity of carbon nanotubes for biomedical purposes. Theranostics 2012, 2, 271–282.

33

Pan, D.; Cai, X.; Kim, B.; Stacy, A. J.; Wang, L. V.; Lanza, G. M. Rapid synthesis of near infrared polymeric micelles for real-time sentinel lymph node imaging. Adv. Healthcare Mater. 2012, 1, 582–589.

34

Sun, Y. P.; Zhou, B.; Lin, Y.; Wang, W.; Fernando, K. A.; Pathak, P.; Meziani, M. J.; Harruff, B. A.; Wang, X.; Wang, H. F. et al. Quantum-sized carbon dots for bright and colorful photoluminescence. J. Am. Chem. Soc. 2006, 128, 7756–7757.

35

Liu, H. P.; Ye, T.; Mao, C. D. Fluorescent carbon nanoparticles derived from candle soot. Angew. Chem., Int. Ed. 2007, 46, 6473–6475.

36

Bourlinos, A. B.; Stassinopoulos, A.; Anglos, D.; Zboril, R.; Georgakilas, V.; Giannelis, E. P. Photoluminescent carbogenic dots. Chem. Mater. 2008, 20, 4539–4541.

37

Huang, P.; Lin, J.; Wang, X. S.; Wang, Z.; Zhang, C. L.; He, M.; Wang, K.; Chen, F.; Li, Z. M.; Shen, G. X. et al. Light-triggered theranostics based on photosensitizer-conjugated carbon dots for simultaneous enhanced-fluorescence imaging and photodynamic therapy. Adv. Mater. 2012, 37, 5104–5110.

38

Liu, Z.; Liang, X. J. Nano-carbons as theranostics. Theranostics 2012, 2, 235–237.

39

Cao, L.; Yang, S. T.; Wang, X.; Luo, P. G.; Liu, J. H.; Sahu, S.; Liu, Y. M.; Sun, Y. P. Competitive performance of carbon "quantum" dots in optical bioimaging. Theranostics 2012, 2, 295–301.

40

Swierczewska, M.; Choi, K. Y.; Mertz, E. L.; Huang, X. L.; Zhang, F.; Zhu, L.; Yoon, H. Y.; Park, J. H.; Bhirde, A.; Lee, S. et al. A facile, one-step nanocarbon functionalization for biomedical applications. Nano Lett. 2012, 12, 3613–3620.

41

Zhu, Y.; Li, J.; Li, W. X.; Zhang, Y.; Yang, X. F.; Chen, N.; Sun, Y. H.; Zhao, Y.; Fan, C. H.; Huang, Q. The biocompatibility of nanodiamonds and their application in drug delivery systems. Theranostics 2012, 2, 302–312.

42

Liu, Z.; Robinson, J. T.; Tabakman, S. M.; Yang, K.; Dai, H. J. Carbon materials for drug delivery and cancer therapy. Mater. Today 2011, 14, 316–323.

43

Zhou, C.; Hao, G. Y.; Thomas, P.; Liu, J. B.; Yu, M. X.; Sun, S. S.; Öz, O. K.; Sun, X. K.; Zheng, J. Near infrared emitting radioactive gold nanoparticles with small-molecule-like pharmacokinetics. Angew. Chem., Int. Ed. 2012, 51, 10118–10122.

Video
nr-6-5-312_ESM_SLN_movie.avi
File
nr-6-5-312_ESM.pdf (332.8 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 11 February 2013
Revised: 14 March 2013
Accepted: 16 March 2013
Published: 12 April 2013
Issue date: May 2013

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Acknowledgements

Acknowledgements

The financial support from the American Heart Association (AHA) Nos. 0835426N and 11IRG5690011 and National Institutes of Health (NIH) under the Grants Nos. NS059302, CA119342, R01 EB000712, R01 EB008085, R01 CA134539, and U54 Nos. CA136398 and HL073646 and the National Cancer Institute (NCI) under the Grant No. N01CO37007 is greatly appreciated. L.W. and B.S. appreciate the financial support of National Natural Science Foundation of China (Nos. 81101087, 81130028, and 31210103913), China Scholarship Council (No. 2011823056), Science and Technology Research Project of Heilongjiang Education Department (No. 12511325), China Postdoctoral Science Foundation (No. 2012M510992) and Heilongjiang Postdoctoral Foundation (No. LBH-Z11054), TEM, SEM, and AFM were conducted at the Nano Research Facility, a member of National Nanotechnology Infrastructure Network-National Science Foundation (NNIN-NSF) under Grant No. ECS-0335765.

Return