Journal Home > Volume 6 , Issue 4

Manganese selenide (MnSe) possesses unique magnetic properties as an important magnetic semiconductor, but the synthesis and properties of MnSe nanocrystals are less developed compared to other semiconductor nanocrystals because of the inability to obtain high-quality MnSe, especially in the metastable wurtzite structure. Here, we have successfully fabricated wurtzite MnSe nanocrystals via a colloidal approach which affords uniform crystal sizes and tailored shapes. The selective binding strength of the amine surfactant is the determining factor in shape-control and shape-evolution. Bullet-shapes could be transformed into shuttle-shapes if part of the oleylamine in the reaction solution was replaced by trioctylamine, and tetrapod-shaped nanocrystals could be formed in trioctylamine systems. The three-dimensional (3D) structure of the bullet-shaped nanorods has been demonstrated by the advanced transmission electron microscope (TEM) 3D-tomography technology. High-resolution TEM (HRTEM) and electron energy-loss spectroscopy (EELS) show that planar-defect structures such as stacking faults and twinning along the [001] direction arise during the growth of bullet-shapes. On the basis of careful HRTEM observations, we propose a "quadra-twin core" growth mechanism for the formation of wurtzite MnSe nanotetrapods. Furthermore, the wurtzite MnSe nanocrystals show low-temperature surface spin-glass behavior due to their noncompensated surface spins and the blocking temperatures increase from 8.4 K to 18.5 K with increasing surface area/volume ratio of the nanocrystals. Our results provide a systematic study of wurtzite MnSe nanocrystals.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Uniform wurtzite MnSe nanocrystals with surface-dependent magnetic behavior

Show Author's information Jie Zhang1,§Fan Zhang2,§Xuebing Zhao1Xinran Wang3Lifeng Yin4Chongyun Liang2Min Wang1Ying Li1Jiwei Liu1Qingsong Wu1Renchao Che1( )
Department of Materials Science and Laboratory of Advanced MaterialsFudan UniversityShanghai200433China
Department of ChemistryFudan UniversityShanghai200433China
National Laboratory of MicrostructuresSchool of Electronic Science and EngineeringNanjing UniversityNanjing210093China
Department of PhysicsFudan UniversityShanghai200433China

§These authors contributed equally to this work.

Abstract

Manganese selenide (MnSe) possesses unique magnetic properties as an important magnetic semiconductor, but the synthesis and properties of MnSe nanocrystals are less developed compared to other semiconductor nanocrystals because of the inability to obtain high-quality MnSe, especially in the metastable wurtzite structure. Here, we have successfully fabricated wurtzite MnSe nanocrystals via a colloidal approach which affords uniform crystal sizes and tailored shapes. The selective binding strength of the amine surfactant is the determining factor in shape-control and shape-evolution. Bullet-shapes could be transformed into shuttle-shapes if part of the oleylamine in the reaction solution was replaced by trioctylamine, and tetrapod-shaped nanocrystals could be formed in trioctylamine systems. The three-dimensional (3D) structure of the bullet-shaped nanorods has been demonstrated by the advanced transmission electron microscope (TEM) 3D-tomography technology. High-resolution TEM (HRTEM) and electron energy-loss spectroscopy (EELS) show that planar-defect structures such as stacking faults and twinning along the [001] direction arise during the growth of bullet-shapes. On the basis of careful HRTEM observations, we propose a "quadra-twin core" growth mechanism for the formation of wurtzite MnSe nanotetrapods. Furthermore, the wurtzite MnSe nanocrystals show low-temperature surface spin-glass behavior due to their noncompensated surface spins and the blocking temperatures increase from 8.4 K to 18.5 K with increasing surface area/volume ratio of the nanocrystals. Our results provide a systematic study of wurtzite MnSe nanocrystals.

Keywords: magnetic properties, nanocrystals, transmission electron microscopy, chalcogens

References(45)

1

Mitchell, K.; Ibers, J. A. Rare-earth transition-metal chalcogenides. Chem. Rev. 2002, 102, 1929–1952.

2

Kwon, S. G.; Hyeon, T. Colloidal chemical synthesis and formation kinetics of uniformly sized nanocrystals of metals, oxides, and chalcogenides. Acc. Chem. Res. 2008, 41, 1696–1709.

3

Zeng, Z. Y.; Yin, Z. Y.; Huang, X.; Li, H.; He, Q. Y.; Lu, G.; Boey, F.; Zhang, H. Single-layer semiconducting nanosheets: High-yield preparation and device fabrication. Angew. Chem. Int. Ed. 2011, 50, 11093–11097.

4

Giebultowicz, T. M.; Samarth, N.; Luo, H.; Furdyna, J. K.; Klosowski, P.; Rhyne, J. J. Strain-engineered incommensurability in epitaxial Heisenberg antiferromagnets. Phys. Rev. B 1992, 46, 12076–12079.

5

Goede, O.; Heimbrodt, W. Optical properties of (Zn, Mn) and (Cd, Mn) chalcogenide mixed crystals and superlattices. Phys. Stat. Solidi B 1988, 146, 11–62.

6

Furdyna, J. K. Diluted magnetic semiconductors. J. Appl. Phys. 1988, 64, R29–R64.

7

Peng, Q.; Dong, Y. J.; Deng, Z. X.; Kou, H. Z.; Gao, S.; Li, Y. D. Selective synthesis and magnetic properties of α-MnSe and MnSe2 uniform microcrystals. J. Phys. Chem. B 2002, 106, 9261–9265.

8

Norris, D. J.; Yao, N.; Charnock, F. T.; Kennedy, T. A. High-quality manganese-doped ZnSe nanocrystals. Nano Lett. 2001, 1, 3–7.

9

Levy, L.; Feltin, N.; Ingert, D.; Pileni, M. P. Three dimensionally diluted magnetic semiconductor clusters Cd1–yMnyS with a range of sizes and compositions: Dependence of spectroscopic properties on the synthesis mode. J. Phys. Chem. B 1997, 101, 9153–9160.

10

Suyver, J. F.; Wuister, S. F.; Kelly, J. J.; Meijerink, A. Synthesis and photoluminescence of nanocrystalline ZnS: Mn2+. Nano Lett. 2001, 1, 429–433.

11

Schlesinger, M. E. The Mn–Se (manganese–selenium) system. J. Phase Equilib. 1998, 19, 588–590.

12

Lindsay, R. Magnetic susceptibility of manganese selenide. Phys. Rev. 1951, 84, 569–571.

13

Thanigaimani, V.; Angahi, M. A. Optical properties of MnSe thin films. Thin Solid Films 1994, 245, 146–151.

14

Wu, M. Z.; Xiong, Y.; Jiang, N.; Ning, M.; Chen, Q. W. Hydrothermal preparation of α-MnSe and MnSe2 nanorods. J. Cryst. Growth 2004, 262, 567–571.

15

Qin, T.; Lu, J.; Wei, S.; Qi, P. F.; Peng, Y. Y.; Yang, Z. P.; Qian, Y. T. α-MnSe crystallites though solvothermal reaction in ethylenediamine. Inorg. Chem. Commun. 2002, 5, 369–371.

16

Wang, L. C.; Chen, L. Y.; Luo, T.; Bao, K. Y.; Qian, Y. T. A facile method to the cube-like MnSe2 microcrystallines via a hydrothermal process. Solid State Commun. 2006, 138, 72–75.

17

Liu, X. D.; Ma, J. M.; Peng, P.; Zheng, W. J. Hydrothermal synthesis of cubic MnSe2 and octahedral α-MnSe microcrystals. J. Cryst. Growth 2009, 311, 1359–1363.

18

Kolodziejski, L. A.; Gunshor, R. L.; Otsuka, N.; Gu, B. P.; Hefetz, Y.; Nurmikko, A. V. Two-dimensional metastable magnetic semiconductor structures. Appl. Phys. Lett. 1986, 48, 1482–1484.

19

Murray, R. M.; Forbes, B. C.; Heyding, R. D. The preparation and paramagnetic susceptibility of β-MnSe. Can. J. Chem. 1972, 50, 4059–4061.

20

Sines, I. T.; Misra, R.; Schiffer, P.; Schaak, R. E. Colloidal synthesis of non-equilibrium wurtzite-type MnSe. Angew. Chem. Int. Ed. 2010, 49, 4638–4640.

21

Yang, X. Y.; Wang, Y. N.; Sui, Y. M.; Huang, X. L.; Cui, T.; Wang, C. Z.; Liu, B. B.; Zou, G. T.; Zou, B. Morphology-controlled synthesis of anisotropic wurtzite MnSe nanocrystals: Optical and magnetic properties. Cryst. Eng. Comm. 2012, 14, 6916–6920.

22

Vayssieres, L.; Keis, K.; Hagfeldt, A.; Lindquist, S. -E. Three-dimensional array of highly oriented crystalline ZnO microtubes. Chem. Mater. 2001, 13, 4395–4398.

23

Manna, L.; Scher, E. C.; Alivisatos, A. P. Synthesis of soluble and processable rod-, arrow-, teardrop-, and tetrapod-shaped CdSe nanocrystals. J. Am. Chem. Soc. 2000, 122, 12700–12706.

24

Peng, Z. A.; Peng, X. Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: Nucleation and growth. J. Am. Chem. Soc. 2002, 124, 3343–3353.

25

Wang, Z. L.; Kong, X. Y.; Zuo, J. M. Induced growth of asymmetric nanocantilever arrays on polar surfaces. Phys. Rev. Lett. 2003, 91, 185502.

26

Gautam, U. K.; Panchakarla, L. S.; Dierre, B.; Fang, X. S.; Bando, Y.; Sekiguchi, T.; Govindaraj, A.; Golberg, D.; Rao, C. N. R. Solvothermal synthesis, cathodoluminescence, and field-emission properties of pure and N-doped ZnO nanobullets. Adv. Funct. Mater. 2009, 19, 131–140.

27

Ding, Y.; Ma, C.; Wang, Z. L. Self-catalysis and phase transformation in the formation of CdSe nanosaws. Adv. Mater. 2004, 16, 1740–1743.

28

Ma, C.; Wang, Z. L. Road map for the controlled synthesis of CdSe nanowires, nanobelts, and nanosaws—a step towards nanomanufacturing. Adv. Mater. 2005, 17, 2635–2639.

29

Manna, L.; Scher, E. C.; Alivisatos, A. P. Shape control of colloidal semiconductor nanocrystals. J. Cluster Sci. 2002, 13, 521–532.

30

Jun, Y. -W.; Lee, S. -M.; Kang, N. -J.; Cheon, J. Controlled synthesis of multi-armed CdS nanorod architectures using monosurfactant system. J. Am. Chem. Soc. 2001, 123, 5150–5151.

31

Manna, L.; Milliron, D. J.; Meisel, A.; Scher, E. C.; Alivisatos, A. P. Controlled growth of tetrapod-branched inorganic nanocrystals. Nat. Mater. 2003, 2, 382–385.

32

Chen, M.; Xie, Y.; Lu, J.; Xiong, Y. J.; Zhang, S. Y.; Qian, Y. T.; Liu, X. M. Synthesis of rod-, twinrod-, and tetrapod-shaped CdS nanocrystals using a highly oriented solvothermal recrystallization technique. J. Mater. Chem. 2002, 12, 748–753.

33

Yu, W. W.; Wang, Y. A.; Peng, X. G. Formation and stability of size-, shape-, and structure-controlled CdTe nanocrystals: Ligand effects on monomers and nanocrystals. Chem. Mater. 2003, 15, 4300–4308.

34

Carbone, L.; Kudera, S.; Carlino, E.; Parak, W. J.; Giannini, C.; Cingolani, R.; Manna, L. Multiple wurtzite twinning in CdTe nanocrystals induced by methylphosphonic acid. J. Am. Chem. Soc. 2006, 128, 748–755.

35

Iwanaga, H.; Fujii, M.; Takeuchi, S. Growth model of tetrapod zinc oxide particles. J. Cryst. Growth 1993, 134, 275–280.

36

Hu, J. Q.; Bando, Y.; Golberg, D. Sn-catalyzed thermal evaporation synthesis of tetrapod-branched ZnSe nanorod architectures. Small 2005, 1, 95–99.

37

Dai, Y.; Mu, X. L.; Tan, Y. M.; Lin, K. Q.; Yang, Z. L.; Zheng, N. F.; Fu, G. Carbon monoxide-assisted synthesis of single-crystalline Pd tetrapod nanocrystals through hydride formation. J. Am. Chem. Soc. 2012, 134, 7073–7080.

38

Kanaras, A. G.; Sönnichsen, C.; Liu, H.; Alivisatos, A. P. Controlled synthesis of hyperbranched inorganic nanocrystals with rich three-dimensional structures. Nano Lett. 2005, 5, 2164–2167.

39

Lee, G. H.; Huh, S. H.; Jeong, J. W.; Choi, B. J.; Kim, S. H.; Ri, H. C. Anomalous magnetic properties of MnO nanoclusters. J. Am. Chem. Soc. 2002, 124, 12094–12095.

40

Puglisi, A.; Mondini, S.; Cenedese, S.; Ferretti, A. M.; Santo, N.; Ponti, A. Monodisperse octahedral α-MnS and MnO nanoparticles by the decomposition of manganese oleate in the presence of sulfur. Chem. Mater. 2010, 22, 2804–2813.

41

Xu, M. H.; Zhong, W.; Yu, J. Y.; Zang, W. C.; Au, C.; Yang, Z. X.; Lv, L. Y.; Du, Y. W. Exchange-bias-like behavior from disordered surface spins in Li4Mn5O12 nanosticks. J. Phys. Chem. C 2010, 114, 16143–16147.

42

Díaz-Guerra, C.; Vila, M.; Piqueras, J. Exchange bias in single-crystalline CuO nanowires. Appl. Phys. Lett. 2010, 96, 193105.

43

Seo, W. S.; Jo, H. H.; Lee, K.; Kim, B.; Oh, S. J.; Park, J. T. Size-dependent magnetic properties of colloidal Mn3O4 and MnO nanoparticles. Angew. Chem. Int. Ed. 2004, 43, 1115–1117.

44

Schladt, T. D.; Graf, T.; Tremel, W. Synthesis and characterization of monodisperse manganese oxide nanoparticles—evaluation of the nucleation and growth mechanism. Chem. Mater. 2009, 21, 3183–3190.

45

Tian, Q. W.; Tang, M. H.; Jiang, F. R.; Liu, Y. W.; Wu, J. H.; Zou, R. J.; Sun, Y. G.; Chen, Z. G.; Li, R. W.; Hu, J. Q. Large-scaled star-shaped α-MnS nanocrystals with novel magnetic properties. Chem. Commun. 2011, 47, 8100–8102.

Video
nr-6-4-275_ESM_Movie_1.avi
nr-6-4-275_ESM_Movie_2.avi
File
nr-6-4-275_ESM.pdf (729.1 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 15 February 2013
Revised: 09 March 2013
Accepted: 11 March 2013
Published: 22 March 2013
Issue date: April 2013

Copyright

© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2013

Acknowledgements

Acknowledgements

This work was supported by the Ministry of Science and Technology of China (973 Project Nos. 2013CB932901 and 2009CB930803), and the National Natural Science Foundation of China (Nos. 11274066, 51172047, 50872145, and 51102050). The authors are grateful to the "Shu Guang" project supported by the Shanghai Municipal Education Commission and the Shanghai Education Development Foundation (09SG01).

Return