Journal Home > Volume 6 , Issue 5

We present a study of the electric field effect on electrochemically grown ultrathin, straight platinum nanowires with minimum diameter of 15 nm and length in the micrometer range, synthesized on a silicon oxide substrate between metal electrodes in H2PtCl6 solution. The influence of the concentration of the platinum-containing acid and the frequency of the applied voltage on the diameter of the nanowires is discussed with a corresponding theoretical analysis. We demonstrate for the first time that the electric field profile, provided by the specific geometry of the metal electrodes, dramatically influences the growth and morphology of the nanowires. Finally, we provide guidelines for the controlled fabrication and contacting of straight, ultrathin metal wires, eliminating branching and dendritic growth, which is one of the main shortcomings of the current bottom-up nanotechnology. The proposed concept of self-assembly of thin nanowires, influenced by the electric field, potentially represents a new route for guided nanocontacting via smart design of the electrode geometry. The possible applications reach from nanoelectronics to gas sensors and biosensors.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Bottom-up synthesis of ultrathin straight platinum nanowires: Electric field impact

Show Author's information Alexander Nerowski1Joerg Opitz1,2Larysa Baraban1( )Gianaurelio Cuniberti1,3
Institute for Materials Science and Max Bergmann Center of Biomaterials Dresden University of TechnologyDresden 01062 Germany
Fraunhofer Institute for Non-Destructive Testing Dresden 01109 Germany
Division of IT Convergence Engineering POSTECHPohang 790-784 Republic of Korea

Abstract

We present a study of the electric field effect on electrochemically grown ultrathin, straight platinum nanowires with minimum diameter of 15 nm and length in the micrometer range, synthesized on a silicon oxide substrate between metal electrodes in H2PtCl6 solution. The influence of the concentration of the platinum-containing acid and the frequency of the applied voltage on the diameter of the nanowires is discussed with a corresponding theoretical analysis. We demonstrate for the first time that the electric field profile, provided by the specific geometry of the metal electrodes, dramatically influences the growth and morphology of the nanowires. Finally, we provide guidelines for the controlled fabrication and contacting of straight, ultrathin metal wires, eliminating branching and dendritic growth, which is one of the main shortcomings of the current bottom-up nanotechnology. The proposed concept of self-assembly of thin nanowires, influenced by the electric field, potentially represents a new route for guided nanocontacting via smart design of the electrode geometry. The possible applications reach from nanoelectronics to gas sensors and biosensors.

Keywords: nanoelectronics, nanostructuring, bottom-up growth, directed electrochemical nanowire assembly (DENA), metal nanowires, local electric field

References(33)

1

Cheng, G.; Siles, P. F.; Bi, F.; Cen, C.; Bogorin, D. F.; Bark, C. W.; Folkman, C. M.; Park, J. -W.; Eom, C. -B.; Medeiros-Ribeiro, G.; et al. Sketched oxide single-electron transistor. Nat. Nanotechnol. 2011, 6, 343–347.

2

Blunt, M. O.; Russell, J. C.; Gimenez-Lopez, M. d. C.; Taleb, N.; Lin, X.; Schröder, M.; Champness, N. R.; Beton, P. H. Guest-induced growth of a surface-based supramolecular bilayer. Nat. Chem. 2011, 3, 74–78.

3

Wang, D.; Sheriff, B. A.; Heath, J. R. Silicon p-FETs from ultrahigh density nanowire arrays. Nano Lett. 2006, 6, 1096–1100.

4

Kuzyk, A. Dielectrophoresis at the nanoscale. Electrophoresis 2011, 32, 2307–2313.

5

Melosh, N. A.; Boukai, A.; Diana, F.; Gerardot, B.; Badolato, A.; Petroff, P. M.; Heath, J. R. Ultrahigh-density nanowire lattices and circuits. Science 2003, 300, 112–115.

6

Yang, P.; Yan, R.; Fardy, M. Semiconductor nanowire: What's next? Nano Lett. 2010, 10, 1529–1536.

7

Mijatovic, D.; Eijkel, J. C. T.; van den Berg, A. Technologies for nanofluidic systems: Top-down vs. bottom-up—A review. Lab Chip 2005, 5, 492–500.

8

He, B.; Morrow, T. J.; Keating, C. D. Nanowire sensors for multiplexed detection of biomolecules. Curr. Opin. Chem. Biol. 2008, 12, 522–528.

9

Lal, S.; Hafner, J. H.; Halas, N. J.; Link, S.; Nordlander, P. Noble metal nanowires: From plasmon waveguides to passive and active devices. Acc. Chem. Res. 2012, 45, 1887–1895.

10

Yogeswaran, U.; Chen, S. -M. A review on the electrochemical sensors and biosensors composed of nanowires as sensing material. Sensors 2008, 8, 290–313.

11

Balasubramanian, K. Challenges in the use of 1D nano-structures for on-chip biosensing and diagnostics: A review. Biosens. Bioelectron. 2010, 26, 1195–204.

12

Nerowski, A.; Poetschke, M.; Bobeth, M.; Opitz, J.; Cuniberti, G. Dielectrophoretic growth of platinum nanowires: Concentration and temperature dependence of the growth velocity. Langmuir 2012, 28, 7498–7504.

13

Pohl, H. A. Dielectrophoresis: The Behavior of Neutral Matter in Nonuniform Electric Fields; Cambridge University Press: Cambridge, 1978.

14

Li, M.; Bhiladvala, R. B.; Morrow, T. J.; Sioss, J. A.; Lew, K. -K.; Redwing, J. M.; Keating, C. D.; Mayer, T. S. Bottom-up assembly of large-area nanowire resonator arrays. Nat. Nanotechnol. 2008, 3, 88–92.

15

Papadakis, S.; Hoffmann, J.; Deglau, D.; Chen, A.; Tyagi, P.; Gracias, D. H. Quantitative analysis of parallel nanowire array assembly by dielectrophoresis. Nanoscale 2011, 3, 1059–1065.

16

Hermanson, K. D.; Lumsdon, S. O.; Williams, J. P.; Kaler, E. W.; Velev, O. D. Dielectrophoretic assembly of electrically functional microwires from nanoparticle suspensions. Science 2001, 294, 1082–1086.

17

Cheng, C.; Gonela, R. K.; Gu, Q.; Haynie, D. T. Self-assembly of metallic nanowires from aqueous solution. Nano Lett. 2005, 5, 175–178.

18

La Ferrara, V.; Madathil, A. P.; Mauro, A. D. G. D.; Massera, E.; Polichetti, T.; Rametta, G. The effect of solvent on the morphology of ZnO nanostructure assembly by dielectrophoresis and its device applications. Electrophoresis 2012, 33, 2086–2093.

19

Flanders, B. N. Directed electrochemical nanowire assembly: Precise nanostructrue assembly via dendritic solidification. Mod. Phys. Lett. B 2012, 26, 1130001.

20

Ranjan, N.; Vinzelberg, H.; Mertig, M. Growing one-dimensional metallic nanowires by dielectrophoresis. Small 2006, 2, 1490–1496.

21

Bhatt, K. H.; Velev, O. D. Control and modeling of the dielectrophoretic assembly of on-chip nanoparticle wires. Langmuir 2004, 20, 467–476.

22

Gierhart, B. C.; Howitt, D. G.; Chen, S. J.; Smith, R. L.; Collins, S. D. Frequency dependence of gold nanoparticle superassembly by dielectrophoresis. Langmuir 2007, 23, 12450–12456.

23

Ozturk, B.; Talukdar, I.; Flanders, B. N. Directed growth of diameter-tunable nanowires. Nanotechnology 2007, 18, 365302.

24

Shelimov, B.; Lambert, J. F.; Che, M.; Didillon, B. Application of NMR to interfacial coordination chemistry: A 195Pt NMR study of the interaction of hexachloroplatinic acid aqueous solutions with alumina. J. Am. Chem. Soc. 1999, 121, 545–556.

25

Kawasaki, J. K.; Arnold, C. B. Synthesis of latinum dendrites and nanowires via directed electrochemical nanowire assembly. Nano Lett. 2011, 11, 781–785.

26

Ciobanas, A. I.; Bejan, A.; Fautrelle, Y. Dendritic solidification morphology viewed from the perspective of constructal theory. J. Phys. D: Appl. Phys. 2006, 39, 5252–5266.

27

Marcus, Y. A simple empirical model describing the thermodynamics of hydration of ions of widely varying charges, sizes, and shapes. Biophys. Chem. 1994, 51, 111–127.

28

Gierer, A.; Wirtz, K. Molekulare theorie der mikroreibung (Molecular theory of microfriction). Z. Naturforschg. A 1953, 8a, 532–538.

29

Laliberté, M. Model for calculating the viscosity of aqueous solutions. J. Chem. Eng. Data 2007, 52, 321–335.

30

Trivedi, R.; Lipton, J.; Kurz, W. Effect of growth rate dependent partition coefficient on the dendritic growth in undercooled melts. Acta Metall. 1987, 35, 965–970.

31

Thapa, P. S.; Ackerson, B. J.; Grischkowsky, D. R.; Flanders, B. N. Directional growth of metallic and polymeric nanowires. Nanotechnology 2009, 20, 235307.

32

Ranjan, N.; Mertig, M.; Cuniberti, G.; Pompe, W. Dielectrophoretic growth of metallic nanowires and microwires: Theory and experiments. Langmuir 2010, 26, 552–559.

33

Lumsdon, S. O.; Scott, D. M. Assembly of colloidal particles into microwires using an alternating electric field. Langmuir 2005, 21, 4874–4880.

File
nr-6-5-303_ESM.pdf (366.3 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 28 January 2013
Revised: 08 March 2013
Accepted: 10 March 2013
Published: 04 April 2013
Issue date: May 2013

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Acknowledgements

Acknowledgements

This work was supported by the European Union (European Social Fund and European Regional Development Fund) and the Free State of Saxony (Saechsische Aufbaubank) in the young researcher group InnovaSens (SAB No. 080942409), and by the World Class University (WCU) program through the Korea Science and Engineering Foundation funded by the Ministry of Education, Science and Technology (project No. R31-2008-000-10100-0). We gratefully acknowledge support from the German Excellence Initiative via the Cluster of Excellence EXC 1056 "Center for Advancing Electronics Dresden" (cfAED). We thank M. Poetschke and M. Bobeth for fruitful discussions.

Return