Journal Home > Volume 6 , Issue 4

A general method for facile kinetics-controlled growth of aligned arrays of mesocrystalline SnO2 nanorods on arbitrary substrates has been developed by adjusting supersaturation in a unique ternary solvent system comprising acetic acid, ethanol, and water. The hydrolysis processes of Sn(Ⅳ) as well as the nucleation and growth of SnO2 crystals were carefully controlled in the mixed solvents, leading to an exclusively heterogeneous nucleation on a substrate and the subsequent growth into mesocrystalline nanorod arrays. In particular, aligned arrays of hierarchically structured, [001]-oriented mesocrystalline SnO2 nanorods with four {110} lateral facets can be readily grown on Ti foil, as well as many other inert substrates such as fluoride-doped tin oxide (FTO), Si, graphite, and polytetrafluoroethylene (Teflon). Due to the unique combination of the mesocrystalline structure and the one-dimensional nanoarray structure, the obtained mesocrystalline SnO2 nanorod arrays grown on metallic Ti substrate exhibited an excellent rate performance with a high initial Coulombic efficiency of 65.6% and a reversible capacity of 720 mA·h/g at a charge/discharge rate of 10 C (namely, 7, 820 mA/g) when used as an anode material for lithium-ion batteries.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Kinetics-controlled growth of aligned mesocrystalline SnO2 nanorod arrays for lithium-ion batteries with superior rate performance

Show Author's information Shuai ChenMiao WangJianfeng YeJinguang CaiYurong MaHenghui Zhou( )Limin Qi( )
Beijing National Laboratory for Molecular SciencesState Key Laboratory for Structural Chemistry of Unstable and Stable SpeciesCollege of ChemistryPeking UniversityBeijing100871China

Abstract

A general method for facile kinetics-controlled growth of aligned arrays of mesocrystalline SnO2 nanorods on arbitrary substrates has been developed by adjusting supersaturation in a unique ternary solvent system comprising acetic acid, ethanol, and water. The hydrolysis processes of Sn(Ⅳ) as well as the nucleation and growth of SnO2 crystals were carefully controlled in the mixed solvents, leading to an exclusively heterogeneous nucleation on a substrate and the subsequent growth into mesocrystalline nanorod arrays. In particular, aligned arrays of hierarchically structured, [001]-oriented mesocrystalline SnO2 nanorods with four {110} lateral facets can be readily grown on Ti foil, as well as many other inert substrates such as fluoride-doped tin oxide (FTO), Si, graphite, and polytetrafluoroethylene (Teflon). Due to the unique combination of the mesocrystalline structure and the one-dimensional nanoarray structure, the obtained mesocrystalline SnO2 nanorod arrays grown on metallic Ti substrate exhibited an excellent rate performance with a high initial Coulombic efficiency of 65.6% and a reversible capacity of 720 mA·h/g at a charge/discharge rate of 10 C (namely, 7, 820 mA/g) when used as an anode material for lithium-ion batteries.

Keywords: lithium-ion batteries, nanostructures, hierarchical structures, tin dioxide, mesocrystals

References(45)

1

Armand, M.; Tarascon, J. M. Building better batteries. Nature 2008, 451, 652–657.

2

Song, M. K.; Park, S.; Alamgir, F. M.; Cho, J.; Liu, M. L. Nanostructured electrodes for lithium-ion and lithium-air batteries: The latest developments, challenges, and perspectives. Mater. Sci. Eng. R 2011, 72, 203–252.

3

Ji, L. W.; Lin, Z.; Alcoutlabi, M.; Zhang, X. W. Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ. Sci. 2011, 4, 2682–2699.

4

Lee, K. T.; Cho, J. Roles of nanosize in lithium reactive nanomaterials for lithium ion batteries. Nano Today 2011, 6, 28–41.

5

Kim, M. G.; Cho, J. Reversible and high-capacity nanostructured electrode materials for Li-ion batteries. Adv. Funct. Mater. 2009, 19, 1497–1514.

6

Wang, Y. G.; Li, H. Q.; He, P.; Hosono, E.; Zhou, H. S. Nano active materials for lithium-ion batteries. Nanoscale 2010, 2, 1294–1305.

7

Li, H.; Wang, Z. X.; Chen, L. Q.; Huang, X. J. Research on advanced materials for Li-ion batteries. Adv. Mater. 2009, 21, 4593–4607.

8

Guo, Y. G.; Hu, J. S.; Wan, L. J. Nanostructured materials for electrochemical energy conversion and storage devices. Adv. Mater. 2008, 20, 2878–2887.

9

Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 2008, 47, 2930–2946.

10

Wang, H. L.; Cui, L. F.; Yang, Y. A.; Casalongue, H. S.; Robinson, J. T.; Liang, Y. Y.; Cui, Y.; Dai, H. J. Mn3O4-graphene hybrid as a high-capacity anode material for lithium ion batteries. J. Am. Chem. Soc. 2010, 132, 13978–13980.

11

Deng, D.; Kim, M. G.; Lee, J. Y.; Cho, J. Green energy storage materials: Nanostructured TiO2 and Sn-based anodes for lithium-ion batteries. Energy Environ. Sci. 2009, 2, 818–837.

12

Jiang, J. A.; Li, Y. Y.; Liu, J. P.; Huang, X. T. Building one-dimensional oxide nanostructure arrays on conductive metal substrates for lithium-ion battery anodes. Nanoscale 2011, 3, 45–58.

13

Wang, Z. Y.; Zhou, L.; Lou, X. W. Metal oxide hollow nanostructures for lithium-ion batteries. Adv. Mater. 2012, 24, 1903–1911.

14

Park, M. S.; Wang, G. X.; Kang, Y. M.; Wexler, D.; Dou, S. X.; Liu, H. K. Preparation and electrochemical properites of SnO2 nanowires for applicaiton in lithium-ion batteries. Angew. Chem. Int. Ed. 2007, 46, 750–753.

15

Wang, C.; Zhou, Y.; Ge, M. Y.; Xu, X. B.; Zhang, Z. L.; Jiang, J. Z. Large-scale synthesis of SnO2 nanosheets with high lithium storage capacity. J. Am. Chem. Soc. 2010, 132, 46–47.

16

Huang, J. Y.; Zhong, L.; Wang, C. M.; Sullivan, J. P.; Xu, W.; Zhang, L. Q.; Mao, S. X.; Hudak, N. S.; Liu, X. H.; Subramanian, A. et al., In situ observation of the electro-chemical lithiation of a single SnO2 nanowire electrode. Science 2010, 330, 1515–1520.

17

Lou, X. W.; Wang, Y.; Yuan, C.; Lee, J. Y.; Archer, L. A. Template-free synthesis of SnO2 hollow nanostructures with high lithium storage capacity. Adv. Mater. 2006, 18, 2325–2329.

18

Wang, Z. Y.; Luan, D. Y.; Boey, F. Y. C.; Lou, X. W. Fast formation of SnO2 nanobox with enhanced lithium storage capability. J. Am. Chem. Soc. 2011, 133, 4738–4741.

19

Wang, Z. Y.; Wang, Z. C.; Madhavi, S.; Lou, X. W. One-step synthesis of SnO2 and TiO2 hollow nanostructures with various shapes and their enhanced lithium storage properties. Chem. Eur. J. 2012, 18, 7561–7567.

20

Ye, J. F.; Zhang, H. J.; Yang, R.; Li, X. G.; Qi, L. M. Morphology-controlled synthesis of SnO2 nanosubes by using 1D silica mesostructures as sacrificial templates and their applications in lithium-ion batteries. Small 2010, 6, 296–306.

21

Kim, H.; Cho, J. Hard templating synthesis of mesoporous and nanowire SnO2 lithium battery anode materials. J. Mater. Chem. 2008, 18, 771–775.

22

Han, Y. T.; Wu, X.; Ma, Y. L.; Gong, L. H.; Qu, F. Y.; Fan, H. J. Porous SnO2 nanowire bundles for photocatalyst and Li ion battery applications. CrystEngComm, 2011, 13, 3506–3510.

23

Ding, S. J.; Chen, J. S.; Lou, X. W. One-dimensional hierarchical structures composed of novel metal oxide nanosheets on a carbon nanotube backbone and their lithium-storage properties. Adv. Funct. Mater. 2011, 21, 4120–4125.

24

Wang, Z. Y.; Zhang, H.; Li, N.; Shi, Z. J.; Gu, Z. N.; Cao, G. P. Laterally confined graphene nanosheets and graphene/SnO2 composites as high-rate anode materials for lihtium-ion batteries. Nano Res. 2010, 3, 748–756.

25

Kim, H.; Kim, S. W.; Park, Y. U.; Gwon, H.; Seo, D. H.; Kim, Y.; Kang, K. SnO2/graphene composite with high lithium storage capability for lithium rechargeable batteries. Nano Res. 2010, 3, 813–821.

26

Ding, S. J.; Luan, D. Y.; Boey, Y. F. C.; Chen, J. S.; Lou, X. W. SnO2 nanosheets grown on graphene sheets with enhanced lithium storage properties. Chem. Commun. 2011, 47, 7155–7157.

27

Ko, Y. D.; Kang, J. G.; Park, J. G.; Lee, S.; Kim, D. W. Self-supported SnO2 nanowire electrodes for high-power lithium-ion batteries. Nanotechnology 2009, 20, 455701.

28

Liu, J. P.; Li, Y. Y.; Huang, X. T.; Ding, R. M.; Hu, Y. Y.; Jiang, J.; Liao, L. Direct growth of SnO2 nanorod array electrodes for lithium-ion batteries. J. Mater. Chem. 2009, 19, 1859–1864.

29

Huang, H.; Lim, C. K.; Tse, M. S.; Guo, J.; Tan, O. K. SnO2 nanorod arrays: Low temperature growth, surface modification and field emission properties. Nanoscale 2012, 4, 1491–1496.

30

Kuang, Q.; Xu, T.; Xie, Z. X.; Lin, S. C.; Huang, R. B.; Zheng, L. S. Versatile fabrication of aligned SnO2 nanotube arrays by using various ZnO arrays as sacrificial templates. J. Mater. Chem. 2009, 19, 1019–1023.

31

Wang, J. Z.; Du, N.; Zhang, H.; Yu, J. X.; Yang, D. R. Large-scale synthesis of SnO2 nanotube arrays as high-performance anode materials of Li-ion batteries. J. Phys. Chem. C 2011, 115, 11302–11305.

32

Vayssieres, L.; Graetzel, M. Highly ordered SnO2 nanorod arrays from controlled aqueous growth. Angew. Chem. Int. Ed. 2004, 43, 3666–3670.

33

Wang, Y. L.; Guo, M.; Zhang, M.; Wang, X. D. Hydrothermal preparation and photoelectrochemical performance of size-controlled SnO2 nanorod arrays. CrystEngComm 2010, 12, 4024–4027.

34

Wang, D. N.; Yang, J. L.; Li, X. F.; Wang, J. J.; Li, R. Y.; Cai, M.; Sham, T. K.; Sun, X. L. Observation of surface/defect states of SnO2 nanowires on different substrates from X-ray excited optical luminescence. Cryst. Growth Des. 2012, 12, 397–402.

35

Cölfen, H.; Antonietti, M. Mesocrystals: Inorganic super-structures made by highly parallel crystallization and controlled alignment. Angew. Chem. Int. Ed. 2005, 44, 5576–5591.

36

Song, R. Q.; Cölfen, H. Mesocrystals - ordered nanopartical superstructures. Adv. Mater. 2010, 22, 1301–1330.

37

Zhou, L.; O'Brien, P. Mesocrystals-properties and applications. J. Phys. Chem. Lett. 2012, 3, 620–628.

38

Cai, J. G.; Ye, J. F.; Chen, S. Y.; Zhao, X. W.; Zhang, D. Y.; Chen, S.; Ma, Y. R.; Jin, S.; Qi, L. M. Self-cleaning, broadband and quasi-omnidirectional antireflective structures based on mesocrystalline rutile TiO2 nanorod arrays. Energy Environ. Sci. 2012, 5, 7575–7581.

39

Ye, J. F.; Liu, W.; Cai, J. G.; Chen, S.; Zhao, X. W.; Zhou, H. H.; Qi, L. M. Nanoporous anatase TiO2 mesocrystals: Additive-free synthesis, remarkable crystalline-phase stability, and improved lithium insertion behavior. J. Am. Chem. Soc. 2011, 133, 933–940.

40

Hong, Z. S.; Wei, M. D.; Lan, T. B.; Jiang, L. L.; Cao, G. Z. Additive-free synthesis of unique TiO2 mesocrystals with enhanced lithium-ion intercalation properties. Energy Environ. Sci. 2012, 5, 5408–5413.

41

Li, W.; Yang, J. P.; Wu, Z. X.; Wang, J. X.; Li, B.; Feng, S. S.; Deng, Y. H.; Zhang, F.; Zhao, D. Y. A versatile kinetics-controlled coating method to construct uniform porous TiO2 shells for multifunctional core–shell structures. J. Am. Chem. Soc. 2012, 134, 11864–11867.

42

Xu, X. X.; Zhuang, J.; Wang, X. SnO2 quantum dots and quantum wires: Controllable synthesis, self-assembled 2D architectures, and gas-sensing properties. J. Am. Chem. Soc. 2008, 130, 12527–11535.

43

Zhang, Z. Y.; Zou, R. J.; Song, G. S.; Yu, L.; Chen, Z. G.; Hu, J. Q. Highly aligned SnO2 nanorods on graphene sheets for gas sensor. J. Mater. Chem. 2011, 21, 17360–17365.

44

Krishnamoorthy, T.; Tang, M. Z.; Verma, A.; Nair, A. S.; Pliszka, D.; Mhaisalkar, S. G.; Ramakrishna, S. A facile route to vertically aligned electrospun SnO2 nanowires on a transparent conducting oxide substrate for dye-sensitized solar cells. J. Mater. Chem. 2012, 22, 2166–2172.

45

Li, H. Q.; Zhou, H. S. Enhancing the performances of Li-ion batteries by carbon-coating: Present and future. Chem. Commun. 2012, 48, 1201–1217.

File
nr-6-4-243_ESM.pdf (615.5 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 08 January 2013
Revised: 30 January 2013
Accepted: 17 February 2013
Published: 04 March 2013
Issue date: April 2013

Copyright

© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2013

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 21173010, 21073005, and 51121091) and the Ministry of Science and Technology (MOST) of China (Grant No. 2013CB932601).

Return