Journal Home > Volume 6 , Issue 3

We report a facile, two-step hydrothermal synthesis of a novel Co3O4/α-Fe2O3 branched nanowire heterostructure, which can serve as a good candidate for lithium-ion battery anodes with high Li+ storage capacity and stability. The single-crystalline, primary Co3O4 nanowire trunk arrays directly grown on Ti substrates allow for efficient electrical and ionic transport. The secondary α-Fe2O3 branches provide enhanced surface area and high theoretical Li+ storage capacity, and can also serve as volume spacers between neighboring Co3O4 NW arrays to maintain electrolyte penetration as well as reduce the aggregation during Li+ intercalation, thus leading to improved electrochemical energy storage performance.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Branched Co3O4/Fe2O3 nanowires as high capacity lithium-ion battery anodes

Show Author's information Hao WuMing XuYongcheng WangGengfeng Zheng( )
Laboratory of Advanced Materials, Department of ChemistryFudan UniversityShanghai200433China

Abstract

We report a facile, two-step hydrothermal synthesis of a novel Co3O4/α-Fe2O3 branched nanowire heterostructure, which can serve as a good candidate for lithium-ion battery anodes with high Li+ storage capacity and stability. The single-crystalline, primary Co3O4 nanowire trunk arrays directly grown on Ti substrates allow for efficient electrical and ionic transport. The secondary α-Fe2O3 branches provide enhanced surface area and high theoretical Li+ storage capacity, and can also serve as volume spacers between neighboring Co3O4 NW arrays to maintain electrolyte penetration as well as reduce the aggregation during Li+ intercalation, thus leading to improved electrochemical energy storage performance.

Keywords: lithium-ion battery, nanowire, Co3O4, α-Fe2O3, branched, Nyquist plot

References(33)

1

Bruce, P. G.; Scrosati, B.; Tarascon, J. M. Nanomaterials for rechargeable lithium batteries. Angew. Chem. Int. Ed. 2008, 47, 2930-2946.

2

Fan, Y.; Huang, K.; Zhang, Q.; Xiao, Q. Z.; Wang, X. X.; Chen, X. D. Novel silicon-nickel cone arrays for high performance LIB anodes. J. Mater. Chem. 2012, 22, 20870-20873.

3

Xu, J. J.; Wu, H. Y.; Wang, F.; Xia, Y. Y.; Zheng, G. F. Zn4Sb3 nanotubes as lithium ion battery anodes with high capacity and cycling stability. Adv. Energy Mater., in press, DOI: 10.1002/aenm.201200564.

4

Lahann, J. Environmental nanotechnology: Nanomaterials clean up. Nat. Nanotechnol. 2008, 3, 320-321.

5

Xie, X. W.; Li, Y.; Liu, Z. Q.; Haruta, M.; Shen. W. J. Low-temperature oxidation of CO catalysed by Co3O4 nanorods. Nature 2009, 458, 746-749.

6

Chen, J.; Xu, L. N.; Li, W. Y.; Gou, X. L. α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv. Mater. 2005, 17, 582-586.

7

Lai, X. Y.; Li, J.; Korgel, B. A.; Dong, Z. H.; Li, Z. M.; Su, F. B.; Du, J.; Wang, D. General synthesis and gas-sensing properties of multi-shell metal oxide hollow microspheres. Angew. Chem. Int. Ed. 2011, 50, 2738-2741.

8

Mao, D.; Yao, J. X.; Lai, X. Y.; Yang, M.; Du, J. A.; Wang, D. Hierarchically mesoporous hematite microspheres and their enhanced formaldehyde-sensing properties. Small 2011, 7, 578-582.

9

Wang, G. M.; Ling, Y. C.; Wheeler, D. A.; George, K. E. N.; Horsley, K.; Heske, C.; Zhang, J. Z.; Li, Y. Facile synthesis of highly photoactive α-Fe2O3-based films for water oxidation. Nano Lett. 2011, 11, 3503-3509.

10

Hochbaum, A. I.; Yang, P. D. Semiconductor nanowires for energy conversion. Chem. Rev. 2010, 110, 527-546.

11

Wang, X.; Wu, X. L.; Guo, Y. G.; Zhong, Y. T.; Cao, X. Q.; Ma, Y.; Yao, J. N. Synthesis and lithium storage properties of Co3O4 nanosheet-assembled multishelled hollow spheres. Adv. Funct. Mater. 2010, 20, 1680-1686.

12

Xia, X. H.; Tu, J. P.; Zhang, Y. Q.; Wang, X. L.; Gu, C. D.; Zhao, X. B.; Fan, H. J. High-quality metal oxide core/shell nanowire arrays on conductive substrates for electrochemical energy storage. ACS Nano 2012, 6, 5531-5538.

13

Wu, H.; Xu, M.; Wu, H. Y.; Xu, J. J.; Wang, Y. L.; Peng, Z.; Zheng, G. F. Aligned NiO nanoflake arrays grown on copper as high capacity lithium-ion battery anodes. J. Mater. Chem. 2012, 22, 19821-19825.

14

Jiang, J.; Li, Y. Y.; Liu, J. P.; Huang, X. T.; Yuan, C. Z.; Lou, X. W. Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv. Mater. 2012, 24, 5166-5180.

15

Wang, Y.; Xia, H.; Lu, L.; Lin, J. Y. Excellent performance in lithium-ion battery anodes: Rational synthesis of Co(CO3)0.5(OH)0.11H2O nanobelt array and its conversion into mesoporous and single-crystal Co3O4. ACS Nano 2010, 4, 1425-1432.

16

Li, Z. M.; Lai, X. Y.; Wang, H.; Mao, D.; Xing, C. J.; Wang, D. Direct hydrothermal synthesis of single-crystalline hematite nanorods assisted by 1, 2-propanediamine. Nanotechnology 2009, 20, 245603.

17

Ye, D. X.; Luo, L. Q.; Ding, Y. P.; Liu, B. D.; Liu, X. Fabrication of Co3O4 nanoparticles-decorated graphene composite for determination of L-tryptophan. Analyst 2012, 137, 2840-2845.

18

Lakshmi, B. B.; Patrissi, C. J.; Martin, C. R. Sol-gel template synthesis of semiconductor oxide micro- and nanostructures. Chem. Mater. 1997, 9, 2544-2550.

19

Nam, K. T. Virus-enabled synthesis and assembly of nanowires for lithium ion battery electrodes. Science 2006, 312, 885-888.

20

Shaju, K. M.; Jiao, F.; Débart, A.; Bruce, P. G. Mesoporous and nanowire Co3O4 as negative electrodes for rechargeable lithium batteries. Phys. Chem. Chem. Phys. 2007, 9, 1837-1842.

21

Li, Y. G.; Tan, B.; Wu, Y. Y. Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett. 2008, 8, 265-270.

22

Lou, X. W.; Deng, D.; Lee, J. Y.; Feng, J.; Archer, L. A. Self-supported formation of needlelike Co3O4 nanotubes and their application as lithium-ion battery electrodes. Adv. Mater. 2008, 20, 258-262.

23

Zhang, C. M.; Chen, J.; Zeng, Y.; Rui, X. H.; Zhu, J. X.; Zhang, W. Y.; Xu, C.; Lim, T. M.; Hng, H. H.; Yan, Q. Y. A facile approach toward transition metal oxide hierarchical structures and their lithium storage properties. Nanoscale 2012, 4, 3718-3724.

24

Jiang, J.; Liu, J. P.; Huang, X. T.; Li, Y. Y.; Ding, R. M.; Ji, X. X.; Hu, Y. Y.; Chi, Q. B.; Zhu, Z. H. General synthesis of large-scale arrays of one-dimensional nanostructured Co3O4 directly on heterogeneous substrates. Cryst. Growth Des. 2010, 10, 70-75.

25

Liang, Y. Y.; Li, Y. G.; Wang, H. L.; Zhou, J. G.; Wang, J.; Regier, T.; Dai, H. J. Co3O4 nanocrystals on graphene as a synergistic catalyst for oxygen reduction reaction. Nat. Mater. 2011, 10, 780-786.

26

Du, N.; Zhang, H.; Chen, B. D.; Wu, J. B.; Ma, X. Y.; Liu, Z. H.; Zhang, Y. Q.; Yang, D. R.; Huang, X. H.; Tu, J. P. Porous Co3O4 nanotubes derived from Co4(CO)12 clusters on carbon nanotube templates: A highly efficient material for Li-battery applications. Adv. Mater. 2007, 19, 4505-4509.

27

Zhou, W.; Cheng, C.; Liu, J. P.; Tay, Y. Y.; Jiang, J.; Jia, X. T.; Zhang, J. X.; Gong, H.; Hng, H. H.; Yu, T.; Fan, H. J. Epitaxial growth of branched α-Fe2O3/SnO2 nano-heterostructures with improved lithium-ion battery performance. Adv. Funct. Mater. 2011, 21, 2439-2445.

28

Zhu, X. J.; Zhu, Y. W.; Murali, S.; Stollers, M. D.; Ruoff, R. S. Nanostructured reduced graphene oxide/Fe2O3 composite as a high-performance anode material for lithium ion batteries. ACS Nano 2011, 5, 3333-3338.

29

Wang, Y. L.; Xu, J. J.; Wu, H.; Xu, M.; Peng, Z.; Zheng, G. F. Hierarchical SnO2-Fe2O3 heterostructures as lithium-ion battery anodes. J. Mater. Chem. 2012, 22, 21923-21927.

30

Chou, S. L.; Wang, J. Z.; Wexler, D.; Konstantinov, K.; Zhong, C.; Liu, H. K.; Dou, S.X. High-surface-area α-Fe2O3/carbon nanocomposite: One-step synthesis and its highly reversible and enhanced high-rate lithium storage properties. J. Mater. Chem. 2010, 20, 2092-2098.

31

Chen, J.; Xia, X. H.; Tu, J. P.; Xiong, Q. Q.; Yu, Y. X.; Wang, X. L.; Gu, C. D. Co3O4-C core-shell nanowire array as an advanced anode material for lithium ion batteries. J. Mater. Chem. 2012, 22, 15056-15061.

32

Wu, Z. S.; Ren, W. C.; Wen, L.; Gao, L. B.; Zhao, J. P.; Chen, Z. P.; Zhou, G. M.; Li, F.; Cheng, H. M. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 2010, 4, 3187-3194.

33

Poizot, P.; Laruelle, S.; Grugeon, S.; Dupont, L.; Tarascon, J. M. Searching for new anode materials for the Li-ion technology: Time to deviate from the usual path. J. Power Sources 2001, 97, 235-239.

File
nr-6-3-167_ESM.pdf (448.8 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 18 December 2012
Revised: 03 January 2013
Accepted: 04 January 2013
Published: 21 January 2013
Issue date: March 2013

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Acknowledgements

Acknowledgements

We thank the following funding agencies for supporting this work: the National Key Basic Research Program of China (No. 2013CB934104), the National Natural Science Foundation of China (NSFC) (No. 21071033), the Program for New Century Excellent Talents in University (No. NCET-10-0357), and the Program for Professor of Special Appointment (Eastern Scholar) at Shanghai Institutions of Higher Learning.

Return