Journal Home > Volume 6 , Issue 2

The electrical properties of chemically derived graphene and graphene grown by chemical vapor deposition (CVD), until now, have been inferior to those of mechanically exfoliated graphene. However, because graphene is easier to produce in large quantities through CVD or growth from solid carbon sources, it has a higher potential for use in future electronics applications. Generally, modifications to the pristine lattice structure of graphene tend to adversely affect the electrical properties by shifting the doping level and changing the conductivity and the mobility. Here we show that a small degree of graphene surface functionalization, using diazonium salts with electron-withdrawing and electron-donating functional groups, is sufficient to predominantly induce p-type doping, undiminished mobility, and higher conductivity at the neutrality point. Molecules without a diazonium anchor group desorb easily and do not have a significant effect on the electronic properties of graphene devices. We further demonstrate the variability between identically fabricated pristine devices, thereby underscoring the caution needed when characterizing graphene device behaviors lest conclusions be drawn based on singular extremes.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Effect of anchor and functional groups in functionalized graphene devices

Show Author's information Elvira Pembroke1Gedeng Ruan1Alexander Sinitskii1David A. Corley1Zheng Yan1Zhengzong Sun1James M. Tour1,2( )
Departments of ChemistryRice UniversityMS 2226100 Main StreetHoustonTexas77005USA
Computer ScienceMechanical Engineering and Materials Scienceand the Smalley Institute for Nanoscale Science and TechnologyRice UniversityMS 2226100 Main StreetHoustonTexas77005USA

Abstract

The electrical properties of chemically derived graphene and graphene grown by chemical vapor deposition (CVD), until now, have been inferior to those of mechanically exfoliated graphene. However, because graphene is easier to produce in large quantities through CVD or growth from solid carbon sources, it has a higher potential for use in future electronics applications. Generally, modifications to the pristine lattice structure of graphene tend to adversely affect the electrical properties by shifting the doping level and changing the conductivity and the mobility. Here we show that a small degree of graphene surface functionalization, using diazonium salts with electron-withdrawing and electron-donating functional groups, is sufficient to predominantly induce p-type doping, undiminished mobility, and higher conductivity at the neutrality point. Molecules without a diazonium anchor group desorb easily and do not have a significant effect on the electronic properties of graphene devices. We further demonstrate the variability between identically fabricated pristine devices, thereby underscoring the caution needed when characterizing graphene device behaviors lest conclusions be drawn based on singular extremes.

Keywords: graphene, chemical vapor deposition, diazonium functionalization, neutrality point

References(38)

1

Chen, J. H.; Cullen, W. G.; Jang, C.; Fuhrer, M. S.; Williams, E. D. Defect scattering in graphene. Phys. Rev. Lett. 2009, 102, 236805.

2

Levesque, P. L.; Sabri, S. S.; Aguirre, C. M.; Guillemette, J.; Siaj, M.; Desjardins, P.; Szkopek, T.; Martel, R. Probing charge transfer at surfaces using graphene transistors. Nano Lett. 2011, 11, 132-137.

3

Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652-655.

4

Chen, J. H.; Jang, C.; Adam, S.; Fuhrer, M. S.; Williams, E. D.; Ishigami, M. Charged-impurity scattering in graphene. Nat. Phys. 2008, 4, 377-381.

5

Giljie, S.; Han, S.; Wang, M.; Wang, K. L.; Kaner, R. B. A chemical route to graphene for device applications. Nano Lett. 2007, 7, 3394-3398.

6

Xia, J. L.; Chen, F.; Tedesco, J. L.; Gaskill, D. K.; Myers-Ward, R. L.; Eddy, C. R., Jr.; Ferry, D. K.; Tao, N. J. The Transport and quantum capacitance properties of epitaxial graphene. Appl. Phys. Lett. 2010, 96, 162101.

7

Li, X.; Cai, W.; An, J.; Kim, S.; Nah, J.; Yang, D.; Piner, R.; Velamakanni, A.; Jung, I.; Tutuc, E., et al. Large-area synthesis of high-quality and uniform graphene films on copper foils. Science 2009, 324, 1312-1314.

8

Reina, A.; Jia, X.; Ho, J.; Nezich, D.; Son, H.; Bulovic, V.; Dresselhaus, M. S.; Kong, J. Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett. 2009, 9, 30-35.

9

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183-191.

10

Geim, A. K. Graphene: Status and prospects. Science 2009, 324, 1530-1534.

11

Farmer, D. B.; Golizadeh-Mojarad, R.; Perebeinos, V.; Lin, Y. M.; Tulvski, G. S.; Tsang, J. C.; Avouris, P. Chemical doping and electron-hole conduction asymmetry in graphene devices. Nano Lett. 2009, 9, 388-392.

12

Bekyarova, E.; Itkis, M. E.; Ramesh, P.; Berger, C.; Sprinkle, M.; de Heer, W. A.; Haddon, R. C. Chemical modification of epitaxial graphene: Spontaneous grafting of aryl groups. J. Am. Chem. Soc. 2009, 131, 1336-1337.

13

Lomeda, J. R.; Doyle, C. D.; Kosynkin, D. V.; Hwang, W. -F.; Tour, J. M. Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J. Am. Chem. Soc. 2008, 130, 16201-16206.

14

Huang, P.; Jing, L.; Zhu, H. R.; Gao, X. Y. Transport properties of diazonium functionalized graphene: Chiral two-dimensional hole gases. J. Phys.: Condens. Matter 2012, 24, 235305.

15

Sun, Z.; Yan, Z.; Yao, J.; Beitler, E.; Zhu, Y.; Tour, J. M. Growth of graphene from solid carbon sources. Nature 2010, 468, 549-552.

16

Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; et al. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

17

Lin, J.; Zhong, J.; Reiber Kyle, J.; Penchev, M.; Ozkan, M.; Ozkan, C. Molecular absorption and photodesorption in pristine and functionalized large-area graphene layers. Nanotechnology 2011, 22, 355701.

18

Hwang, E. H.; Adam, S.; Sarma, S. D. Carrier transport in two-dimensional graphene layers. Phys. Rev. Lett. 2007, 98, 186806.

19

Cheng, Z.; Zhou, Q.; Wang, C.; Li, Q.; Wang, C.; Fang, Y. Toward intrinsic graphene surfaces: A systematic study on thermal annealing and wet-chemical treatment of SiO2-supported graphene devices. Nano Lett. 2011, 11, 767-771.

20

Tan, Y. -W.; Zhang, Y.; Bolotin, K.; Zhao, Y.; Adam, S.; Hwang, E. H.; Sarma, S. D.; Stormer, H. L.; Kim, P. Measurement of scattering rate and minimum conductivity in graphene. Phys. Rev. Lett. 2007, 99, 246803.

21

Liang, X.; Sperling, B. A.; Calizo, I.; Cheng, G.; Hacker, C. A.; Zhang, Q.; Obeng, Y.; Yan, K.; Peng, H.; Li, Q.; et al. Toward clean and crackless transfer of graphene. ACS Nano 2011, 5, 9144-9153.

22

Xia, F.; Perebeinos, V.; Lin, Y.; Wu, Y.; Avouris, P. The origins and limits of metal-graphene junction resistance. Nat. Nanotechnol. 2011, 6, 179-184.

23

Wang, H.; Wu, Y.; Cong, C.; Shang, J.; Yu, T. Hysteresis of electronic transport in graphene transistors. ACS Nano 2010, 4, 7221-7228.

24

Rumyantsev, S. L.; Liu, G.; Shur, M. S.; Balandin, A. Observation of the memory steps in graphene at elevated temperatures. Appl. Phys. Lett. 2011, 98, 222107.

25

Worne, J. H.; Gullapalli, H.; Galande, C.; Ajayan, P.; Natelson, D. Local charge transfer doping in suspended graphene nanojunctions. Appl. Phys. Lett. 2012, 100, 023306.

26

Sinitskii, A.; Dimiev, A.; Corley, D. A.; Fursina, A. A.; Kosynkin, D. V.; Tour, J. M. Kinetics of diazonium functionalization of chemically converted graphene nanoribbons. ACS Nano 2010, 4, 1949-1954.

27

Dyke, C. A.; Steward, M. P.; Maya, F.; Tour, J. M. Diazonium-based functionalization of carbon nanotubes: XPS and GC-MS analysis and mechanistic implications. Synlett. 2004, 155-160.

28

Bahr, J. L.; Yang, J.; Kosynkin, D. V.; Bronikowski, M. J.; Smalley, R. E.; Tour, J. M. Functionalization of carbon nanotubes by electrochemical reduction of aryl diazonium salts: A bucky paper electrode. J. Am. Chem. Soc. 2001, 123, 6536-6542.

29

Laforgue, A.; Addou, T.; Belanger, D. Characterization of the deposition of organic molecules at the surface of gold by the electrochemical reduction of aryldiazonium cations. Langmuir 2005, 21, 6855-6865.

30

Sun, Z.; Kohama, S. -I.; Zhang, Z.; Lomeda, J. R.; Tour, J. M. Soluble graphene through edge-selective functionalization. Nano Res. 2010, 3, 117-125.

31

Lim, H.; Lee, J. S.; Shin, H. -J.; Shin, H. S.; Choi, H. C. Spatially resolved spontaneous reactivity of diazonium salt on edge and basal plane of graphene without surfactant and its doping effect. Langmuir 2010, 26, 12278-12284.

32

Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S.; Cancado, L. G.; Jorio, A.; Saito, R. Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 2007, 9, 1276-1291.

33

Koehler, F. M.; Jacobsen, A.; Ensslin, K.; Stampfer, C.; Stark, W. J. Selective chemical modification of graphene surfaces: Distinction between single- and bilayer graphene. Small 2010, 6, 1125-1130.

34

Sharma, R.; Baik, J. H.; Perera, C. J.; Strano, M. S. Anomalously large reactivity of single graphene layers and edges toward electron transfer chemistries. Nano Lett. 2010, 10, 398-405.

35

Niyogi, S.; Bekyarova, E.; Itkis, M. E.; Zhang, H.; Shepperd, K.; Hicks, J.; Sprinkle, M.; Berger, C.; Lau, C. N.; deHeer, W. A., et al. Spectroscopy of covalently functionalized graphene. Nano Lett. 2010, 10, 4061-4066.

36

Stampfer, C.; Molitor, F.; Graf, D.; Ensslin, K.; Jungen, A.; Hierold, C.; Wirtz, L. Raman imaging of doping domains in graphene on SiO2. Appl. Phys. Lett. 2007, 91, 241907.

37

Huang, P.; Zhu, H.; Jing, L.; Zhao, Y.; Gao, X. Graphene covalently binding aryl groups: Conductivity increases rather than decreases. ACS Nano 2011, 5, 7945-7949.

38

Ho, P. -H.; Yeh, Y. -C.; Wang, D. -Y.; Li, S. -S.; Chen, H. -A.; Chung, Y. -H.; Lin, C. -C.; Wang, W. -H.; Chen, C. -W. Self-encapsulated doping of n-type graphene transistors with extended air stability. ACS Nano 2012, 6, 6215-6221.

File
nr-6-2-138_ESM.pdf (5.7 MB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 01 November 2012
Revised: 20 December 2012
Accepted: 24 December 2012
Published: 23 January 2013
Issue date: February 2013

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2013

Acknowledgements

Acknowledgements

This work was supported by the Air Force Research Laboratory through University Technology Corporation (09-S568-064-01-C1), the Air Force Office of Scientific Research (FA9550-09-1-0581), Sandia National Laboratory, and the Office of Naval Research MURI Graphene Program (00006766, N00014-09-1-1066).

Return