Journal Home > Volume 6 , Issue 1

Graphene-based three-dimensional (3D) macroscopic materials have recently attracted increasing interest by virtue of their exciting potential in electrochemical energy conversion and storage. Here we report a facile one-step strategy to prepare mechanically strong and electrically conductive graphene/Ni(OH)2 composite hydrogels with an interconnected porous network. The composite hydrogels were directly used as 3D supercapacitor electrode materials without adding any other binder or conductive additives. An optimized composite hydrogel containing ~82 wt.% Ni(OH)2 exhibited a specific capacitance of ~1, 247 F/g at a scan rate of 5 mV/s and ~785 F/g at 40 mV/s (~63% capacitance retention) with excellent cycling stability. The capacity of the 3D hydrogels greatly surpasses that of a physical mixture of graphene sheets and Ni(OH)2 nanoplates (~309 F/g at 40 mV/s). The same strategy was also applied to fabricate graphene–carbon nanotube/Ni(OH)2 ternary composite hydrogels with further improved specific capacitances (~1, 352 F/g at 5 mV/s) and rate capability (~66% capacitance retention at 40 mV/s). Both composite hydrogels obtained here can deliver high energy densities (~43 and ~47 Wh/kg, respectively) and power densities (~8 and ~9 kW/kg, respectively), making them attractive electrode materials for supercapacitor applications. This study opens a new pathway to the design and fabrication of functional 3D graphene composite materials, and can significantly impact broad areas including energy storage and beyond.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

One-step strategy to graphene/Ni(OH)2 composite hydrogels as advanced three-dimensional supercapacitor electrode materials

Show Author's information Yuxi Xu1Xiaoqing Huang2Zhaoyang Lin1Xing Zhong1Yu Huang2,3Xiangfeng Duan1,3( )
Department of Chemistry and Biochemistry University of CaliforniaLos AngelesCalifornia 90095 USA
Department of Materials Science and Engineering University of California Los AngelesCalifornia 90095 USA
California Nanosystems Institute University of CaliforniaLos AngelesCalifornia 90095 USA

Abstract

Graphene-based three-dimensional (3D) macroscopic materials have recently attracted increasing interest by virtue of their exciting potential in electrochemical energy conversion and storage. Here we report a facile one-step strategy to prepare mechanically strong and electrically conductive graphene/Ni(OH)2 composite hydrogels with an interconnected porous network. The composite hydrogels were directly used as 3D supercapacitor electrode materials without adding any other binder or conductive additives. An optimized composite hydrogel containing ~82 wt.% Ni(OH)2 exhibited a specific capacitance of ~1, 247 F/g at a scan rate of 5 mV/s and ~785 F/g at 40 mV/s (~63% capacitance retention) with excellent cycling stability. The capacity of the 3D hydrogels greatly surpasses that of a physical mixture of graphene sheets and Ni(OH)2 nanoplates (~309 F/g at 40 mV/s). The same strategy was also applied to fabricate graphene–carbon nanotube/Ni(OH)2 ternary composite hydrogels with further improved specific capacitances (~1, 352 F/g at 5 mV/s) and rate capability (~66% capacitance retention at 40 mV/s). Both composite hydrogels obtained here can deliver high energy densities (~43 and ~47 Wh/kg, respectively) and power densities (~8 and ~9 kW/kg, respectively), making them attractive electrode materials for supercapacitor applications. This study opens a new pathway to the design and fabrication of functional 3D graphene composite materials, and can significantly impact broad areas including energy storage and beyond.

Keywords: graphene, energy storage, hydrogel, supercapacitor, three-dimensional, Ni(OH)2

References(43)

1

Whittingham, M. S. History, evolution, and future status of energy storage. Proc. IEEE. 2012, 100, 1518–1534.

2

Armaroli, N.; Balzani, V. Towards an electricity-powered world. Energy Environ. Sci. 2011, 4, 3193–3222.

3

Arico, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005, 4, 366–377.

4

Simon, P.; Gogotsi, Y. Materials for electrochemical capacitors. Nat. Mater. 2008, 7, 845–854.

5

Hall, P. J.; Mirzaeian, M.; Fletcher, S. I.; Sillars, F. B.; Rennie, A. J. R.; Shitta-Bey, G. O.; Wilson, G.; Cruden, A.; Carter, R. Energy storage in electrochemical capacitors: Designing functional materials to improve performance. Energy Environ. Sci. 2010, 3, 1238–1251.

6

Wang, G. P.; Zhang, L.; Zhang, J. J. A review of electrode materials for electrochemical supercapacitors. Chem. Soc. Rev. 2012, 41, 797–828.

7

Zhu, Y. W.; Murali, S.; Stoller, M. D.; Ganesh, K. J.; Cai, W. W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M., et al. Carbon-based supercapacitors produced by activation of graphene. Science 2011, 332, 1537–1541.

8

Sun, Y. Q.; Wu, Q.; Shi, G. Q. Graphene based new energy materials. Energy Environ. Sci. 2011, 4, 1113–1132.

9

Huang, Y.; Liang, J. J.; Chen, Y. S. An overview of the applications of graphene-based materials in supercapacitors. Small 2012, 8, 1805–1834.

10

Zhai, Y. P.; Dou, Y. Q.; Zhao, D. Y.; Fulvio, P. F.; Mayes, R. T.; Dai, S. Carbon materials for chemical capacitive energy storage. Adv. Mater. 2011, 23, 4828–4850.

11

Stoller, M. D.; Park, S. J.; Zhu, Y. W.; An, J. H.; Ruoff, R. S. Graphene-based ultracapacitors. Nano Lett. 2008, 8, 3498–3502.

12

Yu, D. S.; Dai, L. M. Self-assembled graphene/carbon nanotube hybrid films for supercapacitors. J. Phys. Chem. Lett. 2010, 1, 467–470.

13

Wang, Y.; Shi, Z. Q.; Huang, Y.; Ma, Y. F.; Wang, C. Y.; Chen, M. M.; Chen, Y. S. Supercapacitor devices based on graphene materials. J. Phys. Chem. C 2009, 113, 13103–13107.

14

Xu, Y. X.; Shi, G. Q. Assembly of chemically modified graphene: Methods and applications. J. Mater. Chem. 2011, 21, 3311–3323.

15

Li, C.; Shi, G. Q. Three-dimensional graphene architectures. Nanoscale 2012, 4, 5549–5563.

16

Xu, Y. X.; Wu, Q.; Sun, Y. Q.; Bai, H.; Shi, G. Q. Three-dimensional self-assembly of graphene oxide and DNA into multifunctional hydrogels. ACS Nano 2010, 4, 7358–7362.

17

Worsley, M. A.; Pauzauskie, P. J.; Olson, T. Y.; Biener, J.; Satcher, J. H.; Baumann, T. F. Synthesis of graphene aerogel with high electrical conductivity. J. Am. Soc. Chem. 2010, 132, 14067–14069.

18

Bai, H.; Sheng, K. X.; Zhang, P. F.; Li, C.; Shi, G. Q. Graphene oxide/conducting polymer composite hydrogels. J. Mater. Chem. 2011, 21, 18653–18658.

19

Chen, W. F.; Li, S. R.; Chen, C. H.; Yan, L. F. Self-assembly and embedding of nanoparticles by in situ reduced graphene for preparation of a 3D graphene/nanoparticle aerogel. Adv. Mater. 2011, 23, 5679–5683.

20

Wu, Z. S.; Yang, S. B.; Sun, Y.; Parvez, K.; Feng, X. L.; Mullen, K. 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient eletrocatalysts for the oxygen reduction reaction. J. Am. Chem. Soc. 2012, 134, 9082–9085.

21

Xu, Y. X.; Sheng, K. X.; Li, C.; Shi, G. Q. Self-assembled graphene hydrogel via a one-step hydrothermal process. ACS Nano 2010, 4, 4324–4330.

22

Zhang, L.; Shi, G. Q. Preparation of highly conductive graphene hydrogels for fabricating supercapacitors with high rate capability. J. Phys. Chem. C 2011, 115, 17206–17212.

23

Sheng, K. X.; Sun, Y. Q.; Li, C.; Yuan, W. J.; Shi, G. Q. Ultrahigh-rate supercapacitors based on eletrochemically reduced graphene oxide for ac line-filtering. Sci. Rep. 2012, 2, 247.

24

Chen, J.; Sheng, K. X.; Luo, P. H.; Li, C.; Shi, G. Q. Graphene hydrogels deposited in nickel foams for high-rate electrochemical capacitors. Adv. Mater. 2012, 24, 4569–4573.

25

Chen, W. F.; Yan, L. F. In situ self-assembly of mild chemical reduction graphene for three-dimensional architectures. Nanoscale 2011, 3, 3132–3137.

26

Zhang, X. T.; Sui, Z. Y.; Xu, B.; Yue, S. F.; Luo, Y. J.; Zhan, W. C.; Liu, B. Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources. J. Mater. Chem. 2011, 21, 6494–6497.

27

Wu, Z. S.; Winter, A.; Chen, L.; Sun, Y.; Turchanin, A.; Feng, X. L.; Mullen, K. Three-dimensional nitrogen and boron co-doped graphene for high-performance all-solid-state supercapacitors. Adv. Mater. 2012, 24, 5130–5135.

28

Dong, X. C.; Xu, H.; Wang, X. W.; Huang, Y. X.; Chan-Park, M. B.; Zhang, H.; Wang, L. H.; Huang, W.; Chen, P. 3D graphene-cobalt oxide electrode for high-performance supercapacitor and enzymeless glucose detection. ACS Nano 2012, 6, 3206–3213.

29

Choi, B. G.; Yang, M.; Hong, W. H.; Choi, J. W.; Huh, Y. S. 3D macroporous graphene frameworks for supercapacitors with high energy and power densities. ACS Nano 2012, 6, 4020–4028.

30

Cao, X. H.; Shi, Y. M.; Shi, W. H.; Lu, G.; Huang, X.; Yan, Q. Y.; Zhang, Q. C.; Zhang, H. Preparation of novel 3D graphene networks for supercapacitor applications. Small 2011, 7, 3163–3168.

31

Du, F.; Yu, D. S.; Dai, L. M.; Ganguli, S.; Varshney, V.; Roy, A. K. Preparation of tunable 3D pillared carbon nanotube-graphene networks for high-performance capacitance. Chem. Mater. 2011, 23, 4810–4816.

32

Wang, H. L.; Robinson, J. T.; Diankov, G.; Dai, H. J. Nanocrystal growth on graphene with various degrees of oxidation. J. Am. Chem. Soc. 2010, 132, 3270–3271.

33

Wang, H. L.; Casalongue, H. S.; Liang, Y. Y.; Dai, H. J. Ni(OH)2 Nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J. Am. Chem. Soc. 2010, 132, 7472–7477.

34

Xu, Y. X.; Sheng, K. X.; Li, C.; Shi, G. Q. Highly conductive chemically converted graphene prepared from mildly oxidized graphene oxide. J. Mater. Chem. 2011, 21, 7376–7380.

35

Kim, J.; Cote, L. J.; Kim, F.; Yuan, W.; Shull, K. R.; Huang, J. X. Graphene oxide sheets at interfaces. J. Am. Chem. Soc. 2010, 132, 8180–8186.

36

Qiu, J.; Yang, X. W.; Gou, X. L.; Yang, W. R.; Ma, Z. F.; Wallace, G. G.; Li, D. Dispersing carbon nanotubes with graphene oxide in water and synergistic effects between graphene derivatives. Chem. Eur. J. 2010, 16, 10653–10658.

37

Yan, J.; Fang, Z. J.; Sun, W.; Ning, G. Q.; Wei, T.; Zhang, Q.; Zhang, R. F.; Zhi, L. J.; Wei, F. Advanced asymmetric supercapacitors based on Ni(OH)2/graphene and porous graphene electrodes with high energy density. Adv. Funct. Mater. 2012, 22, 2632–2641.

38

Yan, J.; Sun, W.; Wei, T.; Zhang, Q.; Fang, Z. J.; Wei, F. Fabrication and electrochemical performances of hierarchical porous Ni(OH)2 nanoflakes anchored on graphene sheets. J. Mater. Chem. 2012, 22, 11494–11502.

39

Lee, J. W.; Ahn, T.; Soundararajan, D.; Ko, J. M.; Kim, J. D. Non-aqueous approach to the preparation of reduced graphene oxide/α-Ni(OH)2 hybrid composites and their high capacitance behavior. Chem. Commun. 2011, 47, 6305–6307.

40

Yang, S. B.; Wu, X. L.; Chen, C. L.; Dong, H. L.; Hu, W. P.; Wang, X. K. Spherical α-Ni(OH)2 nanoarchitecture grown on graphene as advanced electrochemical pseudocapacitor materials. Chem. Commun. 2012, 48, 2773–2775.

41

Chang, J.; Xu, H.; Sun, J.; Gao, L. High pseudocapacitance material prepared via in situ growth of Ni(OH)2 nanoflakes on reduced graphene oxide. J. Mater. Chem. 2012, 22, 11146–11150.

42

Hummers, W. S.; Offeman, R. E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339–1339.

43

Xu, Y. X.; Zhao, L.; Bai, H.; Hong, W. J.; Li, C.; Shi, G. Q. Chemically converted graphene induced molecular flattening of 5, 10, 15, 20-tetrakis(1-methyl-4-pyridinio)porphyrin and its application for optical detection of cadmium(Ⅱ) ions. J. Am. Chem. Soc. 2009, 131, 13490–13497.

File
nr-6-1-65_ESM.pdf (708.7 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 04 October 2012
Revised: 30 November 2012
Accepted: 01 December 2012
Published: 22 December 2012
Issue date: January 2013

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012

Acknowledgements

Acknowledgements

We acknowledge the Electron Imaging Center for Nanomachines (EICN) at the California NanoSystems Institute for the technical support of TEM. X. D. acknowledges partial financial support by a 3 M Non-tenured Faculty Award and a Dupont Young Professor Award.

Return