Journal Home > Volume 6 , Issue 1

The structural and vibrational properties of two-dimensional hexagonal silicon (silicene) and germanium (germanene) are investigated by means of first-principles calculations. It is predicted that the silicene (germanene) structure with a small buckling of 0.44 Å (0.7 Å) and bond lengths of 2.28 Å (2.44 Å) is energetically the most favorable, and it does not exhibit imaginary phonon mode. The calculated non-resonance Raman spectra of silicene are characterized by a main peak at about 575 cm–1, namely the G-like peak. For germanene, the highest peak is at about 290 cm–1. Extensive calculations on armchair silicene nanoribbons and armchair germanene nanoribbons are also performed, with and without hydrogenation of the edges. The studies reveal other Raman peaks mainly distributed at lower frequencies than the G-like peak which could be attributed to the defects at the edges of the ribbons, thus not present in the Raman spectra of non-defective silicene and germanene. Particularly the Raman peak corresponding to the D mode is found to be located at around 515 cm–1 for silicene and 270 cm–1 for germanene. The calculated G-like and the D peaks are likely the fingerprints of the Raman spectra of the low-buckled structures of silicene and germanene.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Vibrational properties of silicene and germanene

Show Author's information Emilio Scalise1( )Michel Houssa1Geoffrey Pourtois2,3B. van den Broek1Valery Afanas'ev1André Stesmans1
Semiconductor Physics Laboratory Department of Physics and Astronomy, University of LeuvenCelestijnenlaan 200 D B-3001 Leuven, Belgium
IMEC 5 Kapeldreef B-3001 Leuven, Belgium
Department of Chemistry PLASMANT research group, University of Antwerp, Universiteitsplein 1 B-2610 Wilrijk-Antwerp, Belgium

Abstract

The structural and vibrational properties of two-dimensional hexagonal silicon (silicene) and germanium (germanene) are investigated by means of first-principles calculations. It is predicted that the silicene (germanene) structure with a small buckling of 0.44 Å (0.7 Å) and bond lengths of 2.28 Å (2.44 Å) is energetically the most favorable, and it does not exhibit imaginary phonon mode. The calculated non-resonance Raman spectra of silicene are characterized by a main peak at about 575 cm–1, namely the G-like peak. For germanene, the highest peak is at about 290 cm–1. Extensive calculations on armchair silicene nanoribbons and armchair germanene nanoribbons are also performed, with and without hydrogenation of the edges. The studies reveal other Raman peaks mainly distributed at lower frequencies than the G-like peak which could be attributed to the defects at the edges of the ribbons, thus not present in the Raman spectra of non-defective silicene and germanene. Particularly the Raman peak corresponding to the D mode is found to be located at around 515 cm–1 for silicene and 270 cm–1 for germanene. The calculated G-like and the D peaks are likely the fingerprints of the Raman spectra of the low-buckled structures of silicene and germanene.

Keywords: Raman spectra, silicene, first-principles calculation, germanene, vibrational properties, 2D nanolattice

References(35)

1

Guzmán-Verri, G. G.; Lew Yan Voon, L. C. Electronic structure of silicon-based nanostructures. Phys. Rev. B 2007, 76, 075131.

2

Lebègue, S.; Eriksson, O. Electronic structure of two-dimensional crystals from ab initio theory. Phys. Rev. B 2009, 79, 115409.

3

Cahangirov, S.; Topsakal, M.; Aktürk, E.; Şahin, H.; Ciraci, S. Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 2009, 102, 236804.

4

Houssa, M.; Pourtois, G.; Afanaśev, V. V.; Stesmans, A. Electronic properties of two-dimensional hexagonal germanium. Appl. Phys. Lett. 2010, 96, 082111.

5

Léandri, C.; Oughaddou, H.; Aufray, B.; Gay, J. M.; Le Lay, G.; Ranguis, A.; Garreau, Y. Growth of Si nanostructures on Ag(001). Surf. Sci. 2007, 601, 262–267.

6

Léandri, C.; Le Lay, G.; Aufray, B.; Girardeaux, C.; Avila, J.; Dávila, M. E.; Asensio, M. C.; Ottaviani, C.; Cricenti, A. Self-aligned silicon quantum wires on Ag(110). Surf. Sci. 2005, 574, L9–L15.

7

Le Lay, G.; Aufray, B.; Léandri, C.; Oughaddou, H.; Biberian, J. -P.; De Padova, P.; Dávila, M. E.; Ealet, B.; Kara, A. Physics and chemistry of silicene nano-ribbons. Appl. Surf. Sci. 2009, 256, 524–529.

8

Kara, A.; Léandri, C.; Dávila, M. E.; De Padova, P.; Ealet, B.; Oughaddou, H.; Aufray, B.; Le Lay, G. Physics of silicene stripes. J. Supercond. Nov. Magn. 2009, 22, 259–263.

9

De Padova, P.; Léandri, C.; Vizzini, S.; Quaresima, C.; Perfetti, P.; Olivieri, B.; Oughaddou, H.; Aufray, B.; Le Lay, G. Burning match oxidation process of silicon nanowires screened at the atomic scale. Nano Lett. 2008, 8, 2299–2304.

10

Aufray, B.; Kara, A.; Vizzini, S.; Oughaddou, H.; Léandri, C.; Ealet, B.; Le Lay, G. Graphene-like silicon nanoribbons on Ag(110): A possible formation of silicone. Appl. Phys. Lett. 2010, 96, 183102.

11

Lalmi, B.; Oughaddou, H.; Enriquez, H.; Kara, A.; Vizzini, S.; Ealet, B.; Aufray, B. Epitaxial growth of a silicene sheet. Appl. Phys. Lett. 2010, 97, 223109.

12

De Padova, P.; Quaresima, C.; Ottaviani, C.; Sheverdyaeva, P. M.; Moras, P.; Carbone, C.; Topwal, D.; Olivieri, B.; Kara, A.; Oughaddou, H.; Aufray, B.; Lay, G. L. Evidence of graphene-like electronic signature in silicene nanoribbons. Appl. Phys. Lett. 2010, 96, 261905.

13

Vogt, P.; De Padova, P.; Quaresima, C.; Avila, J.; Frantzeskakis, E.; Asensio, M. C.; Resta, A.; Ealet, B.; Le Lay, G. Silicene: Compelling experimental evidence for graphenelike two-dimensional silicon. Phys. Rev. Lett. 2012, 108, 155501.

14

Lee, C.; Yan, H.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S. Anomalous lattice vibrations of single- and few-layer MoS2. ACS Nano 2010, 4, 2695–2700.

15
Scalise, E.; Houssa, M.; Pourtois, G.; Afanaśev, V. V.; Stesmans, A. First-principles study of strained 2D MoS2. Physica E, in press, DOI: 10.1016/j.physe.2012.07.029.https://doi.org/10.1016/j.physe.2012.07.029
DOI
16

Ferrari, A. C. Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Commun. 2007, 143, 47–57.

17

Ni, Z. H.; Ponomarenko, L. A.; Nair, R. R.; Yang, R.; Anissimova, S.; Grigorieva, I. V.; Schedin, F.; Shen, Z. X.; Hill, E. H.; Novoselov, K. S.; Geim, A. K. On resonant scatterers as a factor limiting carrier mobility in graphene. Nano Lett. 2010, 10, 3868–3872.

18

Giannozzi, P.; Baroni, S.; Bonini, N.; Calandra, M.; Car, R.; Cavazzoni, C.; Ceresoli, D.; Chiarotti, G. L.; Cococcioni, M.; Dabo, I., et al. Quantum espresso: A modular and open-source software project for quantum simulations of materials. J. Phys. : Condens. Matter. 2009, 21, 395502.

19

Bachelet, G. B.; Hamann, D. R.; Schlüter, M. Pseudopotentials that work: From H to Pu. Phys. Rev. B 1982, 26, 4199–4228.

20

Baroni, S.; de Gironcoli, S.; Dal Corso, A.; Giannozzi, P. Phonons and related crystal properties from density-functional perturbation theory. Rev. Mod. Phys. 2001, 73, 515–562.

21

Lazzeri, M.; Mauri, F. First-principles calculation of vibrational raman spectra in large systems: Signature of small rings in crystalline SiO2. Phys. Rev. Lett. 2003, 90, 036401.

22

Parker, J. H.; Feldman, D. W.; Ashkin, M. Raman scattering by silicon and germanium. Phys. Rev. 1967, 155, 712–714.

23

Pimenta, M. A.; Dresselhaus, G.; Dresselhaus, M. S.; Cançado, L. G.; Jorio, A.; Saito, R. Studying disorder in graphite-based systems by Raman spectroscopy. Phys. Chem. Chem. Phys. 2007, 9, 1276–1290.

24

Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K. Raman spectrum of graphene and graphene layers. Phys. Rev. Lett. 2006, 97, 187401.

25

Samarakoon, D. K.; Wang, X. Q. Twist-boat conformation in graphene oxides. Nanoscale 2011, 3, 192–195.

26

Casiraghi, C.; Hartschuh, A.; Qian, H.; Piscanec, S.; Georgi, C.; Fasoli, A.; Novoselov, K. S.; Basko, D. M.; Ferrari, A. C. Raman spectroscopy of graphene edges. Nano Lett. 2009, 9, 1433–1441.

27

Zhou, J.; Dong, J. M. Vibrational property and Raman spectrum of carbon nanoribbon. Appl. Phys. Lett. 2007, 91, 173108.

28

Ren, W. C.; Saito, R.; Gao, L. B.; Zheng, F. W.; Wu, Z. S.; Liu, B. L.; Furukawa, M.; Zhao, J. P.; Chen, Z. P.; Cheng, H. M. Edge phonon state of mono- and few-layer graphene nanoribbons observed by surface and interference co-enhanced Raman spectroscopy. Phys. Rev. B 2010, 81, 035412.

29

Ryu, S.; Maultzsch, J.; Han, M. Y.; Kim, P.; Brus, L. E. Raman spectroscopy of lithographically patterned graphene nanoribbons. ACS Nano 2011, 5, 4123–4130.

30

Ferrari, A. C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107.

31

Lazzeri, M.; Attaccalite, C.; Wirtz, L.; Mauri, F. Impact of the electron-electron correlation on phonon dispersion: Failure of LDA and GGA DFT functionals in graphene and graphite. Phys. Rev. B 2008, 78, 081406(R).

32

Ding, Y.; Ni, J. Electronic structures of silicon nanoribbons. Appl. Phys. Lett. 2009, 95, 083115.

33

Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47–99.

34

Cahangirov, S.; Topsakal, M.; Ciraci, S. Armchair nanoribbons of silicon and germanium honeycomb structures. Phys. Rev. B 2010, 81, 195120.

35

Koskinen, P.; Malola, S.; Häkkinen, H. Self-passivating edge reconstructions of graphene. Phys. Rev. Lett. 2008, 101, 115502.

File
nr-6-1-19_ESM.pdf (305.6 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 24 September 2012
Revised: 07 October 2012
Accepted: 10 October 2012
Published: 17 December 2012
Issue date: January 2013

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012

Acknowledgements

Acknowledgements

Part of this work has been financially supported by the Research Funds of KU Leuven (project OT/09/031) and the European (Project 2D-NANOLATTICES), FET-Open (No 270749). We thank Dr. Eugenio Cinquanta, Dr. Daniele Chiappe and Dr. Alessandro Molle for helpful discussions.

Return