Journal Home > Volume 5 , Issue 12

Enhanced absorption of especially long wavelength light is needed to enable the full potential of semiconductor nanowire (NW) arrays for optoelectronic applications. We show both experimentally and theoretically that a transparent dielectric shell (Al2O3 coating) can drastically improve the absorption of light in InAs NW arrays. With an appropriate thickness of the Al2O3 shell, we achieve four times stronger absorption in the NWs compared to uncoated NWs and twice as good absorption as when the dielectric completely fills the space between the NWs. We provide detailed theoretical analysis from a combination of full electrodynamic modeling and intuitive electrostatic approximations. This reveals how the incident light penetrates better into the absorbing NW core with increasing thickness of the dielectric shell until a resonant shell thickness is reached. We provide a simple description of how to reach this strongly absorbing resonance condition, making our results easy to apply for a broad wavelength range and a multifold of semiconductor and dielectric coating material combinations.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Drastically Increased Absorption in Vertical Semiconductor Nanowire Arrays: A Non-Absorbing Dielectric Shell Makes the Difference

Show Author's information Nicklas Anttu1,§( )Kousar L. Namazi1,§Phillip M. Wu1,§( )Pengfei Yang2Hongxing Xu1,2H. Q. Xu1,3Ulf Håkanson1,2
Division of Solid State Physics/The Nanometer Structure Consortium at Lund University (nmC@LU)P.O. Box 118, S-221 00, LundSweden
Beijing National Laboratory for Condensed Matter PhysicsInstitute of PhysicsChinese Academy of SciencesP.O. Box 603-146Beijing100190China
Department of Electronics and Key Laboratory for the Physics and Chemistry of NanodevicesPeking UniversityBeijing100871China

§ N. A., K. N., and P. M. W. contributed equally to this work and are co-first authors

Abstract

Enhanced absorption of especially long wavelength light is needed to enable the full potential of semiconductor nanowire (NW) arrays for optoelectronic applications. We show both experimentally and theoretically that a transparent dielectric shell (Al2O3 coating) can drastically improve the absorption of light in InAs NW arrays. With an appropriate thickness of the Al2O3 shell, we achieve four times stronger absorption in the NWs compared to uncoated NWs and twice as good absorption as when the dielectric completely fills the space between the NWs. We provide detailed theoretical analysis from a combination of full electrodynamic modeling and intuitive electrostatic approximations. This reveals how the incident light penetrates better into the absorbing NW core with increasing thickness of the dielectric shell until a resonant shell thickness is reached. We provide a simple description of how to reach this strongly absorbing resonance condition, making our results easy to apply for a broad wavelength range and a multifold of semiconductor and dielectric coating material combinations.

Keywords: core-shell, absorption, InAs, photovoltaics, Nanowire array, Al2O3 coating

References(39)

1

Fan, H. J.; Werner, P.; Zacharias, M. Semiconductor nanowires: From self-organization to patterned growth. Small 2006, 2, 700–717.

2

Martensson, T.; Carlberg, P.; Borgström, M.; Montelius, L.; Seifert, W.; Samuelson, L. Nanowire arrays defined by nanoimprint lithography. Nano Lett. 2004, 4, 699–702.

3

Goto, H.; Nosaki, K.; Tomioka, K.; Hara, S.; Hiruma, K.; Motohisa, J.; Fukui, T. Growth of core-shell InP nanowires for photovoltaic application by selective-area metal organic vapor phase epitaxy. Appl. Phys. Express 2009, 2, 035004.

4

Fukui, T.; Yoshimura, M.; Nakai, E.; Tomioka, K. Position-controlled Ⅲ–Ⅴ compound semiconductor nanowire solar cells by selective-area metal-organic vapor phase epitaxy. AMBIO 2012, 41, 119–124.

5

Czaban, J. A.; Thompson, D. A.; LaPierre, R. R. GaAs core—shell nanowires for photovoltaic applications. Nano Lett. 2009, 9, 148–154.

6

Anttu, N.; Xu, H. Q. Coupling of light into nanowire arrays and subsequent absorption. J. Nanosci. Nanotechnol. 2010, 10, 7183–7187.

7

Borgström, M. T.; Wallentin, J.; Heurlin, M.; Falt, S.; Wickert, P.; Leene, J.; Magnusson, M. H.; Deppert, K.; Samuelson, L. Nanowires with promise for photovoltaics. IEEE J. Sel. Top. Quant. 2011, 17, 1050–1061.

8

Kupec, J.; Stoop, R. L.; Witzigmann, B. Light absorption and emission in nanowire array solar cells. Opt. Express 2010, 18, 27589–27605.

9

Diedenhofen, S. L.; Janssen, O. T. A.; Grzela, G.; Bakkers, E. P. A. M.; Rivas, J. G. Strong geometrical dependence of the absorption of light in arrays of semiconductor nanowires. ACS Nano 2011, 5, 2316–2323.

10

Logeeswaran, V. J.; Oh, J.; Nayak, A. P.; Katzenmeyer, A. M.; Gilchrist, K. H.; Grego, S.; Kobayashi, N. P.; Wang, S. Y.; Talin, A. A.; Dhar, N. K.; Islam, M. S. A perspective on nanowire photodetectors: Current status, future challenges, and opportunities. IEEE J. Sel. Top. Quant. 2011, 17, 1002–1032.

11

Scofield, A. C.; Kim, S. H.; Shapiro, J. N.; Lin, A.; Liang, B. L.; Scherer, A.; Huffaker, D. L. Bottom-up photonic crystal lasers. Nano Lett. 2011, 11, 5387–5390.

12

Svensson, C. P. T.; Martensson, T.; Tragardh, J.; Larsson, C.; Rask, M.; Hessman, D.; Samuelson, L.; Ohlsson, J. Monolithic GaAs/InGaP nanowire light emitting diodes on silicon. Nanotechnology 2008, 19, 305201.

13

Kästner, G.; Gösele, U. Stress and dislocations at cross-sectional heterojunctions in a cylindrical nanowire. Philos. Mag. 2004, 84, 3803–3824.

14

Dick, K. A.; Kodambaka, S.; Reuter, M. C.; Deppert, K.; Samuelson, L.; Seifert, W.; Wallenberg, L. R.; Ross, F. M. The morphology of axial and branched nanowire heterostructures. Nano Lett. 2007, 7, 1817–1822.

15

Björk, M. T.; Ohlsson, B. J.; Sass, T.; Persson, A. I.; Thelander, C.; Magnusson, M. H.; Deppert, K.; Wallenberg, L. R.; Samuelson, L. One-dimensional steeplechase for electrons realized. Nano Lett. 2002, 2, 87–89.

16

Lauhon, L. J.; Gudiksen, M. S.; Wang, C. L.; Lieber, C. M. Epitaxial core-shell and core-multishell nanowire heterostructures. Nature 2002, 420, 57–61.

17

Green, M. A. Third generation photovoltaics: Ultra-high conversion efficiency at low cost. Prog. Photovoltaics 2001, 9, 123–135.

18

Wu, P. M.; Anttu, N.; Xu, H. Q.; Samuelson, L.; Pistol, M. E. Colorful InAs nanowire arrays: From strong to weak absorption with geometrical tuning. Nano Lett. 2012, 12, 1990–1995.

19

Marichy, C.; Bechelany, M.; Pinna, N. Atomic layer deposition of nanostructured materials for energy and environmental applications. Adv. Mater. 2012, 24, 1017–1032.

20

Persson, H.; Beech, J. P.; Samuelson, L.; Oredsson, S.; Prinz, C. N.; Tegenfeldt, J. O. Vertical oxide nanotubes connected by subsurface microchannels. Nano Res. 2012, 5, 190–198.

21

Schmidt, J.; Veith, B.; Brendel, R. Effective surface passivation of crystalline silicon using ultrathin Al2O3 films and Al2O3/SiNx stacks. Phys. Status Solidi-R 2009, 3, 287–289.

22

Macleod, H. A. Thin-Film Optical Filters; CRC Press: New York, 2010.

DOI
23

Min, B. D.; Lee, J. S.; Cho, K. G.; Hwang, J. W.; Kim, H.; Sung, M. Y.; Kim, S.; Park, J.; Seo, H. W.; Bae, S. Y.; Lee, M. S.; Park, S. O.; Moon, J. T. Semiconductor nanowires surrounded by cylindrical Al2O3 shells. J. Electron. Mater. 2003, 32, 1344–1348.

24
The Landolt Börnstein Database [Online]. Springer Materials.http://www.springermaterials.com.
25

Seo, K.; Wober, M.; Steinvurzel, P.; Schonbrun, E.; Dan, Y. P.; Ellenbogen, T.; Crozier, K. B. Multicolored vertical silicon nanowires. Nano Lett. 2011, 11, 1851–1856.

26

Hu, L.; Chen, G. Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications. Nano Lett. 2007, 7, 3249–3252.

27

Muskens, O. L.; Rivas, J. G.; Algra, R. E.; Bakkers, E. P. A. M.; Lagendijk, A. Design of light scattering in nanowire materials for photovoltaic applications. Nano Lett. 2008, 8, 2638–2642.

28

Anttu, N.; Xu, H. Q. Scattering matrix method for optical excitation of surface plasmons in metal films with periodic arrays of subwavelength holes. Phys. Rev. B 2011, 83, 165431.

29
Palik, E. D.; Holm, R. T. Indium rsenide (InAs). In Handbook of Optical Constants of Solids, Palik, E. D., Ed.; Academic Press: Burlington, 1997; pp 479–489.https://doi.org/10.1016/B978-012544415-6.50021-2
DOI
30
Gervais, F. Aluminum Oxide (Al2O3). In Handbook of Optical Constants of Solids. Palik, E. D., Ed.; Academic Press: Burlington, 1997; pp 761–775.https://doi.org/10.1016/B978-012544415-6.50078-9
DOI
31

Tian, B. Z.; Zheng, X. L.; Kempa, T. J.; Fang, Y.; Yu, N. F.; Yu, G. H.; Huang, J. L.; Lieber, C. M. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 2007, 449, 885–889.

32

Nicorovici, N. A.; McPhedran, R. C.; Milton, G. W. Transport properties of a three-phase composite material: The square array of coated cylinders. Proc. R. Soc. Lond. A 1993, 442, 599–620.

33
Bures, J. Guided Optics: Optical Fibers and All-Fiber Components; Wiley-VCH: Weinheim, 2009.
34

Wu, P. M.; Samuelson, L.; Linke, H. Toward 3D integration of 1D conductors: Junctions of InAs nanowires. J. Nanomater. 2011, 268149.

35

Kavanagh, K. L. Misfit dislocations in nanowire heterostructures. Semicond. Sci. Technol. 2010, 25, 024006.

36

Ghalamestani, S. G.; Johansson, S.; Borg, B. M.; Lind, E.; Dick, K. A.; Wernersson, L. E. Uniform and position-controlled InAs nanowires on 2″ Si substrates for transistor applications. Nanotechnology 2012, 23, 015302.

37

Mårtensson, T.; Svensson, C. P. T.; Wacaser, B. A.; Larsson, M. W.; Seifert, W.; Deppert, K.; Gustafsson, A.; Wallenberg, L. R.; Samuelson, L. Epitaxial Ⅲ–Ⅴ nanowires on silicon. Nano Lett. 2004, 4, 1987–1990.

38

Bakkers, E. P. A. M.; Borgström, M. T.; Verheijen, M. A. Epitaxial growth of Ⅲ–Ⅴ nanowires on group Ⅳ substrates. MRS Bull. 2007, 32, 117–122.

39

Parkinson, P.; Joyce, H. J.; Gao, Q.; Tan, H. H.; Zhang, X.; Zou, J.; Jagadish, C.; Herz, L. M.; Johnston, M. B. Carrier lifetime and mobility enhancement in nearly defect-free core—shell nanowires measured using time-resolved terahertz spectroscopy. Nano Lett. 2009, 9, 3349–3353.

File
nr-5-12-863_ESM.pdf (781.5 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 16 August 2012
Revised: 10 October 2012
Accepted: 11 October 2012
Published: 15 November 2012
Issue date: December 2012

Copyright

© Tsinghua University Press and Springer-Verlag GmbH Germany, part of Springer Nature 2012

Acknowledgements

We acknowledge George Rydnemalm, Mariusz Graczyk and Sören Jeppesen for assistance in sample processing and Professors Lars Samuelson, Heiner Linke, and Mats–Erik Pistol for stimulating discussions and support. This work was financially supported by the Swedish Research Council (VR), the Swedish Foundation for Strategic Research (SSF), the Nanometer Structure Consortium at Lund University (nmC@LU), European Union (EU) program Architectures, Materials, and One-dimensional Nanowires for PhotovoltaicsResearch and Applications (AMON-RA) (No. 214814), Nordic Innovation program NANORDSUN, Knut and Alice Wallenberg Foundation, E.ON AG as part of the E.ON International Research Initiative, the National Basic Research Program of the Ministry of Science and Technology of China (Nos. 2012CB932703 and 2012CB932700), and a Fellowship for Young International Scientists of Chinese Academy of Sciences (U. H.).

Return