Journal Home > Volume 5 , Issue 9

Rational synthesis of bimetallic alloy nanocrystals (NCs) is still a great challenge. Especially, spatially uniform alloy NCs are very difficult to achieve because of the different reduction rates of the individual alloy components. Herein we propose a facile wet chemical synthetic strategy to prepare uniform bimetallic alloy NCs with tunable composition by controlling the growth of alloy NCs under diffusion controlled conditions. Using this strategy, we successfully synthesized trisoctahedral (TOH) Au–Pd alloy NCs enclosed by {hhl} high-index facets with uniform spatial distributions and different compositions. Significantly, using our strategy, the composition of the as-prepared Au–Pd alloy NCs is identical to the ratio of the two metal precursors in the reaction solution over a wide range. Investigation of the composition-dependent electrochemical behavior of the as-prepared TOH Au–Pd alloy NCs showed that the TOH Au–Pd alloy NCs containing 14.1 atom% Pd exhibited the best activity.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Synthesis of Spatially Uniform Metal Alloys Nanocrystals via a Diffusion Controlled Growth Strategy: The Case of Au–Pd Alloy Trisoctahedral Nanocrystals with Tunable Composition

Show Author's information Jiawei ZhangLei ZhangYanyan JiaGuangxu ChenXue WangQin Kuang( )Zhaoxiong Xie( )Lansun Zheng
Department of Chemistry & State Key Laboratory of Physical Chemistry of Solid SurfacesCollege of Chemistry and Chemical Engineering, Xiamen UniversityXiamen361005China

Abstract

Rational synthesis of bimetallic alloy nanocrystals (NCs) is still a great challenge. Especially, spatially uniform alloy NCs are very difficult to achieve because of the different reduction rates of the individual alloy components. Herein we propose a facile wet chemical synthetic strategy to prepare uniform bimetallic alloy NCs with tunable composition by controlling the growth of alloy NCs under diffusion controlled conditions. Using this strategy, we successfully synthesized trisoctahedral (TOH) Au–Pd alloy NCs enclosed by {hhl} high-index facets with uniform spatial distributions and different compositions. Significantly, using our strategy, the composition of the as-prepared Au–Pd alloy NCs is identical to the ratio of the two metal precursors in the reaction solution over a wide range. Investigation of the composition-dependent electrochemical behavior of the as-prepared TOH Au–Pd alloy NCs showed that the TOH Au–Pd alloy NCs containing 14.1 atom% Pd exhibited the best activity.

Keywords: palladium, gold, electrocatalysis, diffusion, Alloys

References(40)

1

Li, Y.; Hong, X. M.; Collard, D. M.; El-Sayed, M. A. Suzuki cross-coupling reactions catalyzed by palladium nano-particles in aqueous solution. Org. Lett. 2000, 2, 2385–2388.

2

Jiang, Z. Y.; Kuang, Q.; Xie, Z. X.; Zheng, L. S. Syntheses and properties of micro/nanostructured crystallites with high-energy surfaces. Adv. Funct. Mater. 2010, 20, 3634–3645.

3

Jin, R.; Cao, Y. C.; Hao, E.; Métraux, G. S.; Schatz, G. C.; Mirkin, C. A. Controlling anisotropic nanoparticle growth through plasmon excitation. Nature 2003, 425, 487–490.

4

Li, J. F.; Huang, Y. F.; Ding, Y.; Yang, Z. L.; Li, S. B.; Zhou, X. S.; Fan, F. R.; Zhang, W.; Zhou, Z. Y.; Wu, D. Y., et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 2010, 464, 392–395.

5

Zhang, J. W.; Zhang, L.; Xie, S. F.; Kuang, Q.; Han, X. G.; Xie, Z. X.; Zheng, L. S. Synthesis of concave palladium nanocubes with high-index surfaces and high electrocatalytic activities. Chem. Eur. J. 2011, 17, 9915–9919.

6

Niu, W. X.; Xu, G. B. Crystallographic control of noble metal nanocrystals. Nano Today 2011, 6, 265–285.

7

Jin, M.; Liu, H.; Zhang, H.; Xie, Z.; Liu, J.; Xia, Y. Synthesis of Pd nanocrystals enclosed by {100} facets and with sizes <10 nm for application in CO oxidation. Nano Res. 2011, 4, 83–91.

DOI
8

Chen, M. S.; Kumar, D.; Yi, C. W.; Goodman, D. W. The promotional effect of gold in catalysis by palladium–gold. Science 2005, 310, 291–293.

9

Xu, J.; White, T.; Li, P.; He, C. H.; Yu, J. G.; Yuan, W. K.; Han, Y. F. Biphasic Pd–Au alloy catalyst for low-temperature CO oxidation. J. Am. Chem. Soc. 2010, 132, 10398–10406.

10

Zhang, J.; Yang, H. Z.; Fang, J. Y.; Zou, S. Z. Synthesis and oxygen reduction activity of shape-controlled Pt3Ni nanopolyhedra. Nano Lett. 2010, 10, 638–644.

11

Zhang, L.; Chen, D. Q.; Jiang, Z. Y.; Zhang, J. W.; Xie, S. F.; Kuang, Q.; Xie, Z. X.; Zheng, L. S. Facile syntheses and enhanced electrocatalytic activities of Pt nanocrystals with {hkk} high-index surfaces. Nano Res. 2012, 5, 181–189.

12

Fan, F. R.; Liu, D. Y.; Wu, Y. F.; Duan, S.; Xie, Z. X.; Jiang, Z. Y.; Tian, Z. Q. Epitaxial growth of heterogeneous metal nanocrystals: From gold nano-octahedra to palladium and silver nanocubes. J. Am. Chem. Soc. 2008, 130, 6949–6951.

13

Lee, Y. W.; Kim, M.; Kim, Z. H.; Han, S. W. One-Step synthesis of Au@Pd core–shell nanooctahedron. J. Am. Chem. Soc. 2009, 131, 17036–17037.

14

Wang, D. S.; Li, Y. D. One-pot protocol for Au-based hybrid magnetic nanostructures via a noble-metal-induced reduction process. J. Am. Chem. Soc. 2010, 132, 6280–6281.

15

Maksimuk, S.; Yang, S. C.; Peng, Z. M.; Yang, H. Synthesis and characterization of ordered intermetallic PtPb nanorods. J. Am. Chem. Soc. 2007, 129, 8684–8685.

16

Peng, Z. M.; Yang, H. Designer platinum nanoparticles: Control of shape, composition in alloy, nanostructure and electrocatalytic property. Nano Today 2009, 4, 143–164.

17

Zhang, L.; Zhang, J. W.; Kuang, Q.; Xie, S. F.; Jiang, Z. Y.; Xie, Z. X; Zheng, L. S. Cu2+ assisted synthesis of hexoctahedral Au–Pd alloy nanocrystals with high-index facets. J. Am. Chem. Soc. 2011, 133, 17114–17117.

18

Hong, J. W.; Kim. D.; Kang, S. W.; Han, S. W. Atomic-distribution-dependent electrocatalytic activity of Au–Pd bimetallic nanocrystals. Angew. Chem. Int. Ed. 2011, 50, 8876–8880.

19

Lee, Y. W.; Kim, M.; Kang, S. W.; Han, S. W. Polyhedral bimetallic alloy nanocrystals exclusively bound by {110} facets: Au–Pd rhombic dodecahedra. Angew. Chem. Int. Ed. 2011, 50, 3466–3470.

20

Ma, Y. Y.; Kuang, Q.; Jiang, Z. Y.; Xie, Z. X.; Huang, R. B.; Zheng, L. S. Synthesis of trisoctahedral gold nanocrystals with exposed high-index facets by a facile chemical method. Angew. Chem. Int. Ed. 2008, 47, 8901–8904.

21

Tian, N.; Zhou, Z. Y.; Sun, S. G.; Ding, Y.; Wang, Z. L. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science 2007, 316, 732–735.

22

Zhang, L.; Zhang, J. W.; Jiang, Z. Y.; Xie, S. F.; Jin, M. S.; Han, X. G.; Kuang, Q.; Xie, Z. X.; Zheng, L. S. Facile syntheses and electrocatalytic properties of porous Pd and its alloy nanospheres. J. Mater. Chem. 2011, 21, 9620–9625.

23

Lu, C. L.; Prasad, K. S.; Wu, H. L.; Ho, J. A. A.; Huang, M. H. Au nanocube-directed fabrication of Au–Pd core–shell nanocrystals with tetrahexahedral, concave octahedral, and octahedral structures and their electrocatalytic activity. J. Am. Chem. Soc. 2010, 132, 14546–14553.

24

Jiang, Q. N.; Jiang, Z. Y.; Zhang, L.; Lin, H. X.; Yang, N.; Li, H.; Liu, D. Y.; Xie, Z. X.; Tian, Z. Q. Synthesis and high electrocatalytic performance of hexagram shaped gold particles having an open surface structure with kinks. Nano Res. 2011, 4, 612–622.

25

Jin, M. S.; Zhang, H.; Xie, Z. X.; Xia, Y. Palladium concave nanocubes with high-index facets and their enhanced catalytic properties. Angew. Chem. Int. Ed. 2011, 50, 7850–7854.

26

Bard, A. J.; Faulkner, L. R. In Electrochemical Methods, Vol. 2; Harris, D.; Swain, E., Eds.; Wiley: Weinheim, 2001, pp. 29–30.

27

Denton, A. R.; Ashcroft, N. W. Vegard's law. Phys. Rev. A 1991, 43, 3161–3164.

28

Wu, H. L.; Kuo, C. H.; Huang, M. H. Seed-mediated synthesis of gold nanocrystals with systematic shape evolution from cubic to trisoctahedral and rhombic dodecahedral structures. Langmuir 2010, 26, 12307–12313.

29

Eguchi, M.; Mitsui, D.; Wu, H. L.; Sato, R.; Teranishi, T. Simple reductant concentration-dependent shape control of polyhedral gold nanoparticles and their plasmonic properties. Langmuir 2012, 28, 9021–9026.

30

Ming, T.; Feng, W.; Tang, Q.; Wang, F.; Sun, L. D.; Wang, J. F.; Yan, C. H. Growth of tetrahexahedral gold nanocrystals with high-index facets. J. Am. Chem. Soc. 2009, 131, 16350–16351.

31

Langille, M. R.; Personick, M. L.; Zhang, J.; Mirkin, C. A. Bottom-up synthesis of gold octahedra with tailorable hollow features. J. Am. Chem. Soc. 2011, 133, 10414–10417.

32

Ahrenstorf, K.; Albrecht, O.; Heller, H.; Kornowski, A.; Görlitz, D.; Weller, H. Colloidal synthesis of NixPt1–x with tuneable composition and size. Small 2007, 3, 271–274.

33

Elkins, K. E.; Vedantam, T. S.; Liu, J. P.; Zeng, H.; Sun, S. H.; Ding, Y.; Wang, Z. L. Ultrafine FePt nanoparticles prepared by the chemical reduction method. Nano Lett. 2003, 3, 1647–1649.

34

Okamoto, H.; Massalski, T. B. The Au–Pd (gold–palladium) system. Bull. Alloy Phase Diag. 1985, 6, 229–235.

35

Ksar, F.; Surendran, G.; Ramos, L.; Keita, B.; Nadjo, L.; Prouzet, E.; Beaunier, P.; Hagège, A. S.; Audonnet, F.; Remita, H. Palladium nanowires synthesized in hexagonal mesophases: Application in ethanol electrooxidation. Chem. Mater. 2009, 21, 1612–1617.

36

Cheng, F. L.; Dai, X. C.; Wang, H.; Jiang, S. P.; Zhang, M.; Xu, C. W. Synergistic effect of Pd–Au bimetallic surfaces in Au-covered Pd nanowires studied for ethanol oxidation. Electrochim. Acta. 2010, 55, 2295–2298.

37

Xu, J. B.; Zhao, T. S.; Li, Y. S.; Yang, W. W. Synthesis and characterization of the Au-modified Pd cathode catalyst for alkaline direct ethanol fuel cells. Int. J. Hydrogen Energy 2010, 35, 9693–9700.

38

Cheng, J.; Hu, P.; Ellis, P.; French, S.; Kelly, G.; Lok, C. M. Brønsted–Evans–Polanyi relation of multistep reactions and volcano curve in heterogeneous catalysis. J. Phys. Chem. C 2008, 112, 1308–1311.

39

Bligaard, T.; Nørskov, J. K.; Dahl, S.; Matthiesen, J.; Christensen, C. H.; Sehested, J. The Brønsted–Evans–Polanyi relation and the volcano curve in heterogeneous catalysis. J. Catal. 2004, 224, 206–217.

40

Ruban, A.; Hammer, B.; Stoltze, P.; Skriver, H. L.; Nørskov, J. K. Surface electronic structure and reactivity of transition and noble metals. J. Mol. Catal. A: Chem. 1997, 115, 421–429.

File
nr-5-9-618_ESM.pdf (834.1 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 05 June 2012
Revised: 09 July 2012
Accepted: 13 July 2012
Published: 02 August 2012
Issue date: September 2012

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012

Acknowledgements

Acknowledgements

This work was supported by the National Basic Research Program of China (Grant Nos. 2011CBA00508), the National Natural Science Foundation of China (Grant Nos. 21131005, 21021061, and 21073145), and Key Scientific Project of Fujian Province of China (Grant No. 2009HZ0002-1).

Return