Journal Home > Volume 5 , Issue 9

We report a simple method of enhancing the chemical stability of monothiol-modified oligonucleotide–gold and –silver nanoparticle conjugates by a thin silica reinforcement coating. Conventional conjugates prepared by chemisorption of monothiol-modified oligonucleotides onto nanoparticle surfaces undergo rapid aggregation in the presence of thiol-containing small molecules (e.g., dithiothreitol) due to ligand exchange reactions. When the conjugates are treated with (3-mercaptopropyl)trimethoxysilane, a thin silica layer is formed on the nanoparticle surface, thereby entrapping and reinforcing the thiol–gold/–silver linkage. These silica-modified oligonucleotide–gold and –silver nanoparticle conjugates become much more stable toward dithiothreitol as compared to the unmodified conjugates. Moreover, the silica layer significantly hinders the gold/silver core from oxidative dissolution by sodium cyanide. Importantly, the unique hybridization-induced color change property of the oligonucleotide–gold and –silver nanoparticle conjugates is preserved even under harsh condition (i.e., high concentrations of dithiothreitol). Taken together, these ultra-stable oligonucleotide–nanoparticle conjugates hold promise for new diagnostics and therapeutics.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Ultra-Stable Oligonucleotide–Gold and –Silver Nanoparticle Conjugates Prepared by a Facile Silica Reinforcement Method

Show Author's information Jacky K. F. Wong1Shea Ping Yip2M. H. Lee Thomas1( )
Interdisciplinary Division of Biomedical EngineeringThe Hong Kong Polytechnic UniversityHong KongChina
Department of Health Technology and InformaticsThe Hong Kong Polytechnic UniversityHong KongChina

Abstract

We report a simple method of enhancing the chemical stability of monothiol-modified oligonucleotide–gold and –silver nanoparticle conjugates by a thin silica reinforcement coating. Conventional conjugates prepared by chemisorption of monothiol-modified oligonucleotides onto nanoparticle surfaces undergo rapid aggregation in the presence of thiol-containing small molecules (e.g., dithiothreitol) due to ligand exchange reactions. When the conjugates are treated with (3-mercaptopropyl)trimethoxysilane, a thin silica layer is formed on the nanoparticle surface, thereby entrapping and reinforcing the thiol–gold/–silver linkage. These silica-modified oligonucleotide–gold and –silver nanoparticle conjugates become much more stable toward dithiothreitol as compared to the unmodified conjugates. Moreover, the silica layer significantly hinders the gold/silver core from oxidative dissolution by sodium cyanide. Importantly, the unique hybridization-induced color change property of the oligonucleotide–gold and –silver nanoparticle conjugates is preserved even under harsh condition (i.e., high concentrations of dithiothreitol). Taken together, these ultra-stable oligonucleotide–nanoparticle conjugates hold promise for new diagnostics and therapeutics.

Keywords: gold nanoparticle, Oligonucleotide–nanoparticle conjugate, silica reinforcement coating, silver nanoparticle

References(35)

1

Mirkin, C. A.; Letsinger, R. L.; Mucic, R. C.; Storhoff, J. J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 1996, 382, 607–609.

2

Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A. Selective colorimetric detection of poly-nucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 1997, 277, 1078–1081.

3

Storhoff, J. J.; Elghanian, R.; Mucic, R. C.; Mirkin, C. A.; Letsinger, R. L. One-pot colorimetric differentiation of polynucleotides with single base imperfections using gold nanoparticle probes. J. Am. Chem. Soc. 1998, 120, 1959–1964.

4

Liu, J. W.; Lu, Y. A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J. Am. Chem. Soc. 2003, 125, 6642–6643.

5

Zhao, W. A.; Lam, J. C. F.; Chiuman, W.; Brook, M. A.; Li, Y. F. Enzymatic cleavage of nucleic acids on gold nanoparticles: A generic platform for facile colorimetric biosensors. Small 2008, 4, 810–816.

6

Liu, J. W.; Lu, Y. Fast colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew. Chem. Int. Ed. 2006, 45, 90–94.

7

Li, F.; Zhang, J.; Cao, X. N.; Wang, L. H.; Li, D.; Song, S. P.; Ye, B. C.; Fan, C. H. Adenosine detection by using gold nanoparticles and designed aptamer sequences. Analyst 2009, 134, 1355–1360.

8

Zhao, W. A.; Chiuman, W.; Brook, M. A.; Li, Y. F. Simple and rapid colorimetric biosensors based on DNA aptamer and noncrosslinking gold nanoparticle aggregation. ChemBioChem 2007, 8, 727–731.

9

Huang, C. C.; Huang, Y. F.; Cao, Z. H.; Tan, W. H.; Chang, H. T. Aptamer-modified gold nanoparticles for colorimetric determination of platelet-derived growth factors and their receptors. Anal. Chem. 2005, 77, 5735–5741.

10

Medley, C. D.; Smith, J. E.; Tang, Z.; Wu, Y.; Bamrungsap, S.; Tan, W. H. Gold nanoparticle-based colorimetric assay for the direct detection of cancerous cells. Anal. Chem. 2008, 80, 1067–1072.

11

Thompson, D. G.; Enright, A.; Faulds, K.; Smith, W. E.; Graham, D. Ultrasensitive DNA detection using oligonucleotide-silver nanoparticle conjugates. Anal. Chem. 2008, 80, 2805–2810.

12

Rosi, N. L.; Giljohann, D. A.; Thaxton, C. S.; Lytton-Jean, A. K. R.; Han, M. S.; Mirkin, C. A. Oligonucleotide-modified gold nanoparticles for intracellular gene regulation. Science 2006, 312, 1027–1030.

13

Dhar, S., Daniel, W. L.; Giljohann, D. A.; Mirkin, C. A.; Lippard, S. J. Polyvalent oligonucleotide gold nanoparticle conjugates as delivery vehicles for platinum(Ⅳ) warheads. J. Am. Chem. Soc. 2009, 131, 14652–14653.

14

Alivisatos, A. P.; Johnsson, K. P.; Peng, X. G.; Wilson, T. E.; Loweth, C. J.; Bruchez, M. P.; Schultz, P. G. Organization of 'nanocrystal molecules' using DNA. Nature 1996, 382, 609–611.

15

Sharma, J.; Chhabra, R.; Liu, Y.; Ke, Y. G.; Yan, H. DNA-templated self-assembly of two-dimensional and periodical gold nanoparticle arrays. Angew. Chem. Int. Ed. 2006, 45, 730–735.

16

Zhao, W. A.; Gao, Y.; Kandadai, S. A.; Brook, M. A.; Li, Y. F. DNA polymerization on gold nanoparticles through rolling circle amplification: Towards novel scaffolds for three-dimensional periodic nanoassemblies. Angew. Chem. Int. Ed. 2006, 45, 2409–2413.

17

Letsinger, R. L.; Elghanian, R.; Viswanadham, G.; Mirkin, C. A. Use of a steroid cyclic disulfide anchor in constructing gold nanoparticle–oligonucleotide conjugates. Bioconjugate Chem. 2000, 11, 289–291.

18

Demers, L. M.; Mirkin, C. A.; Mucic, R. C.; Reynolds, R. A.; Letsinger, R. L.; Elghanian, R.; Viswanadham, G. A Fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles. Anal. Chem. 2000, 72, 5535–5541.

19

Ou, L. J.; Jin, P. Y.; Chu, X.; Jiang, J. H.; Yu, R. Q. Sensitive and visual detection of sequence-specific DNA-binding protein via a gold nanoparticle-based colorimetric biosensor. Anal. Chem. 2010, 82, 6015–6024.

20

Li, Z.; Jin, R. C.; Mirkin, C. A.; Letsinger, R. L. Multiple thiol-anchor capped DNA-gold nanoparticle conjugates. Nucleic Acids Res. 2002, 30, 1558–1562.

21

Dougan, J. A.; Karlsson, C.; Smith, W. E.; Graham, D. Enhanced oligonucleotide-nanoparticle conjugate stability using thioctic acid modified oligonucleotides. Nucleic Acids Res. 2007, 35, 3668–3675.

22

Sharma, J.; Chhabra, R.; Yan, H.; Liu, Y. A facile in situ generation of dithiocarbamate ligands for stable gold nanoparticle-oligonucleotide conjugates. Chem. Commun. 2008, 2140–2142.

23

Lee, J. S.; Lytton-Jean, A. K. R.; Hurst, S. J.; Mirkin, C. A. Silver nanoparticle-oligonucleotide conjugates based on DNA with triple cyclic disulfide moieties. Nano Lett. 2007, 7, 2112–2115.

24

Liu, S. H.; Han, M. Y. Synthesis, functionalization, and bioconjugation of monodisperse, silica-coated gold nanoparticles: Robust bioprobes. Adv. Funct. Mater. 2005, 15, 961–967.

25

Liu, S. H.; Zhang, Z. H.; Han, M. Y. Gram-scale synthesis and biofunctionalization of silica-coated silver nanoparticles for fast colorimetric DNA detection. Anal. Chem. 2005, 77, 2595–2600.

26

Schroedter, A.; Weller, H.; Eritja, R.; Ford, W. E.; Wessels, J. M. Biofunctionalization of silica-coated CdTe and gold nanocrystals. Nano Lett. 2002, 2, 1363–1367.

27

Liz-Marzan, L. M.; Giersig, M.; Mulvaney, P. Synthesis of nanosized gold-silica core-shell particles. Langmuir 1996, 12, 4329–4335.

28

Mulvaney, S. P.; Musick, M. D.; Keating, C. D.; Natan, M. J. Glass-coated, analyte-tagged nanoparticles: A new tagging system based on detection with surface-enhanced Raman scattering. Langmuir 2003, 19, 4784–4790.

29

Wong, J. K. F.; Yip, S. P.; Lee, T. M. H. Silica-modified oligonucleotide-gold nanoparticle conjugate enables closed-tube colorimetric polymerase chain reaction. Small 2012, 8, 214–219.

30

Grabar, K. C.; Freeman, R. G.; Hommer, M. B.; Natan, M. J. Preparation and characterization of Au colloid monolayers. Anal. Chem. 1995, 67, 735–743.

31

Haiss, W.; Thanh, N. T. K.; Aveyard, J.; Fernig, D. G. Determination of size and concentration of gold nanoparticles from UV-Vis spectra. Anal. Chem. 2007, 79, 4215–4221.

32

Dubertret, B.; Calame, M.; Libchaber, A. J. Single-mismatch detection using gold-quenched fluorescent oligonucleotides. Nat. Biotechnol. 2001, 19, 365−370.

33

Jana, N. R.; Ying, J. Y. Synthesis of functionalized Au nanoparticles for protein detection. Adv. Mater. 2008, 20, 430–434.

34

Zhang, Q.; Zhang, T. R.; Ge, J. P.; Yin, Y. D. Permeable silica shell through surface-protected etching. Nano Lett. 2008, 8, 2867–2871.

35

Sato, K.; Hosokawa, K.; Maeda, M. Rapid aggregation of gold nanoparticles induced by non-cross-linking DNA hybridization. J. Am. Chem. Soc. 2003, 125, 8102−8103.

File
nr-5-9-585_ESM.pdf (505.9 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 19 February 2012
Revised: 21 June 2012
Accepted: 22 June 2012
Published: 21 July 2012
Issue date: September 2012

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012

Acknowledgements

Acknowledgements

This work was supported by the Research Grants Council of the Hong Kong Special Administrative Region, China (Project No.: PolyU 501208) and The Hong Kong Polytechnic University (Project Codes: A-PA9P and A-PA7K).

Return