Journal Home > Volume 5 , Issue 8

A novel pure cubic-phase pyrochlore structure tin(Ⅱ) antimonate nanophotocatalyst, stoichiometric Sn2Sb2O7, has been prepared by a modified ion-exchange process using an antimonic acid precursor, and employed in visible-light-driven photocatalytic H2 evolution for the first time. The physicochemical properties (crystal phase, chemical composition and state, textural properties, and optical properties) of the material were investigated by different instrumental techniques. Compared with the antimonic acid precursor, the as-prepared Sn2Sb2O7 had a narrower bandgap, smaller crystal size, and larger BET surface area. The as-prepared Sn2Sb2O7 was validated as a promising candidate for visible-light-driven photocatalytic H2 evolution with a constant rate of 40.10 μmol·h−1·gcat−1.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A Novel Sn2Sb2O7 Nanophotocatalyst for Visible-Light-Driven H2 Evolution

Show Author's information Jinwen ShiLijing MaPo WuZhaohui ZhouPenghui GuoShaohua ShenDengwei JingLiejin Guo( )
28 West Xianning Road International Research Center for Renewable Energy State Key Laboratory of Multiphase Flow in Power Engineering (MFPE), Xi'an Jiaotong University (XJTU)Xi'an 710049 China

Abstract

A novel pure cubic-phase pyrochlore structure tin(Ⅱ) antimonate nanophotocatalyst, stoichiometric Sn2Sb2O7, has been prepared by a modified ion-exchange process using an antimonic acid precursor, and employed in visible-light-driven photocatalytic H2 evolution for the first time. The physicochemical properties (crystal phase, chemical composition and state, textural properties, and optical properties) of the material were investigated by different instrumental techniques. Compared with the antimonic acid precursor, the as-prepared Sn2Sb2O7 had a narrower bandgap, smaller crystal size, and larger BET surface area. The as-prepared Sn2Sb2O7 was validated as a promising candidate for visible-light-driven photocatalytic H2 evolution with a constant rate of 40.10 μmol·h−1·gcat−1.

Keywords: nanostructures, photochemistry, energy conversion, ion exchange, Bandgap engineering, tin(Ⅱ)

References(34)

1

Pagliaro, M.; Konstandopoulos, A. G.; Ciriminna, R.; Palmisano, G. Solar hydrogen: Fuel of the near future. Energy Environ. Sci. 2010, 3, 279–287.

2

Osterloh, F. E. Inorganic materials as catalysts for photo-chemical splitting of water. Chem. Mater. 2008, 20, 35–54.

3

Inoue, Y. Photocatalytic water splitting by RuO2-loaded metal oxides and nitrides with d0- and d10-related electronic configurations. Energy Environ. Sci. 2009, 2, 364–386.

4

Kudo, A.; Miseki, Y. Heterogeneous photocatalyst materials for water splitting. Chem. Soc. Rev. 2009, 38, 253–278.

5

Abe, R. Recent progress on photocatalytic and photo-electrochemical water splitting under visible light irradiation. J. Photochem. Photobio. C 2010, 11, 179–209.

6

Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503–6570.

7

Kitano, M.; Hara, M. Heterogeneous photocatalytic cleavage of water. J. Mater. Chem. 2010, 20, 627–641.

8

Maeda, K.; Domen, K. Photocatalytic water splitting: Recent progress and future challenges. J. Phys. Chem. Lett. 2010, 1, 2655–2661.

9

Linic, S.; Christopher, P.; Ingram, D. B. Plasmonic-metal nanostructures for efficient conversion of solar to chemical energy. Nat. Mater. 2011, 10, 911–921.

10

Shen, S. H.; Shi, J. W.; Guo, P. H.; Guo, L. J. Visible-light-driven photocatalytic water splitting on nanostructured semiconducting materials. Int. J. Nanotechnol. 2011, 8, 523–591.

11

Tong, H.; Ouyang, S. X.; Bi, Y. P.; Umezawa, N.; Oshikiri, M.; Ye, J. H. Nano-photocatalytic materials: Possibilities and challenges. Adv. Mater. 2012, 24, 229–251.

12

Fujishima, A.; Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 1972, 238, 37–38.

13

Zou, Z. G.; Ye, J. H.; Sayama, K.; Arakawa, H. Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst. Nature 2001, 414, 625–627.

14

Hosogi, Y.; Shimodaira, Y.; Kato, H.; Kobayashi, H.; Kudo, A. Role of Sn2+ in the band structure of SnM2O6 and Sn2M2O7 (M = Nb and Ta) and their photocatalytic properties. Chem. Mater. 2008, 20, 1299–1307.

15

Cho, I. S.; Kwak, C. H.; Kim, D. W.; Lee, S.; Hong, K. S. Photophysical, photoelectrochemical, and photocatalytic properties of novel SnWO4 oxide semiconductors with narrow band gaps. J. Phys. Chem. C 2009, 113, 10647–10653.

16

Uma, S.; Singh, J.; Thakral, V. Facile room temperature ion-exchange synthesis of Sn2+ incorporated pyrochlore-type oxides and their photocatalytic activities. Inorg. Chem. 2009, 48, 11624–11630.

17

Boppana, V. B. R.; Lobo, R. F. Photocatalytic degradation of organic molecules on mesoporous visible-light-active Sn(Ⅱ)-doped titania. J. Catal. 2011, 281, 156–168.

18

Li, Q. Y.; Kako, T.; Ye, J. H. Facile ion-exchanged synthesis of Sn2+ incorporated potassium titanate nanoribbons and their visible-light-responded photocatalytic activity. Int. J. Hydrogen Energy 2011, 36, 4716–4723.

19

Shi, J. W.; Ye, J. H.; Zhou, Z. H.; Li, M. T.; Guo, L. J. Hydrothermal synthesis of Na0.5La0.5TiO3–LaCrO3 solid-solution single-crystal nanocubes for visible-light-driven photocatalytic H2 evolution. Chem. Eur. J. 2011, 17, 7858–7867.

20

Zhang, Z. Y.; Lin, Q. P.; Zheng, S. T.; Bu, X. H.; Feng, P. Y. A novel sandwich-type polyoxometalate compound with visible-light photocatalytic H2 evolution activity. Chem. Commun. 2011, 47, 3918–3920.

21

Shi, J. W.; Ye, J. H.; Li, Q. Y.; Zhou, Z. H.; Tong, H.; Xi, G. C.; Guo, L. J. Single-crystal nanosheet-based hierarchical AgSbO3 with exposed {001} facets: Topotactic synthesis and enhanced photocatalytic activity. Chem. Eur. J. 2012, 18, 3157–3162.

22

Asahi, R.; Morikawa, T.; Ohwaki, T.; Aoki, K.; Taga, Y. Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 2001, 293, 269–271.

23

Khan, S. U. M.; Al-Shahry, M.; Ingler, W. B. Jr. Efficient photochemical water splitting by a chemically modified n-TiO2. Science 2002, 297, 2243–2245.

24

Maeda, K.; Teramura, K.; Lu, D. L.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K. Photocatalyst releasing hydrogen from water. Nature 2006, 440, 295–295.

25

Sun, J. W.; Liu, C.; Yang, P. D. Surfactant-free, large-scale, solution–liquid–solid growth of gallium phosphide nanowires and their use for visible-light-driven hydrogen production from water reduction. J. Am. Chem. Soc. 2011, 133, 19306–19309.

26

Tang, M. L.; Grauer, D. C.; Lassalle-Kaiser, B.; Yachandra, V. K.; Amirav, L.; Long, J. R.; Yano, J.; Alivisatos, A. P. Structural and electronic study of an amorphous MoS3 hydrogen-generation catalyst on a quantum-controlled photo-sensitizer. Angew. Chem. Int. Ed. 2011, 50, 10203–10207.

27

Chen, X. B.; Liu, L.; Yu, P. Y.; Mao, S. S. Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 2011, 331, 746–750.

28

Ozawa, Y.; Miura, N.; Yamazoe, N.; Seiyama, T. Proton conduction in thermally treated antimonic acid samples. Chem. Lett. 1982, 11, 1741–1742.

29

Liu, Q. Z.; Dai, J. M.; Liu, Z. L.; Zhang, X. B.; Zhu, G. P.; Ding, G. H. Electrical and optical properties of Sb-doped BaSnO3 epitaxial films grown by pulsed laser deposition. J. Phys. D. 2010, 43, 455401.

30

Shi, J. W.; Ye, J. H.; Ma, L. J.; Ouyang, S. X.; Jing, D. W.; Guo, L. J. Site-selected doping of upconversion luminescent Er3+ into SrTiO3 for visible-light-driven photocatalytic H2 or O2 evolution. Chem. Eur. J. 2012, 18, 7543–7551.

31

Zhang, Q.; Joo, J. B.; Lu, Z. D.; Dahl, M.; Oliveira, D. Q. L.; Ye, M. M.; Yin, Y. D. Self-assembly and photocatalysis of mesoporous TiO2 nanocrystal clusters. Nano Res. 2011, 4, 103–114.

32

Shi, J. W.; Shen S. H.; Chen Y. B.; Guo L. J.; Mao S. S. Visible light-driven photocatalysis of doped SrTiO3 tubular structure. Opt. Express 2012, 20, A351–A359.

33

Zhang, J.; Yu, J.; Zhang, Y.; Li, Q.; Gong, J. R. Visible light photocatalytic H2-production activity of CuS/ZnS porous nanosheets based on photoinduced interfacial charge transfer. Nano Lett. 2011, 11, 4774–4779.

34

Hwang, S.; Lee, M. C.; Choi, W. Highly enhanced photocatalytic oxidation of CO on titania deposited with Pt nanoparticles: Kinetics and mechanism. Appl. Catal. B 2003, 46, 49–63.

File
nr-5-8-576_ESM.pdf (282.4 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 March 2012
Revised: 22 June 2012
Accepted: 24 June 2012
Published: 22 July 2012
Issue date: August 2012

Copyright

© Tsinghua University Press and Springer‐Verlag Berlin Heidelberg 2012

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Nos. 50821064, 51121092, 20906074, and 51102194) and the National Basic Research Program of China (No. 2009CB220000). The authors acknowledge the "3rd Australia-China Symposium for Materials Science", and J. W. Shi thanks W. D. Tang for taking photographs.

Return