Journal Home > Volume 5 , Issue 8

Ultrasmall silver nanoclusters (AgNCs) are a novel type of fluorescent nanoprobes that have aroused a great deal of interest in recent years. In view of many promising applications in biological research, it is of great importance to explore their behavior in the complex biological environment. In this study, interactions of AgNCs with a model protein, human serum albumin (HSA), have been systematically investigated by using a variety of techniques including absorption spectroscopy, steady-state and time-resolved fluorescence, as well as circular dichroism spectroscopy. The results show that the physicochemical properties of both proteins and AgNCs undergo changes upon their interactions; however, it appears that the overall conformation of HSA remains essentially unaffected in the complex. Binding of HSA to AgNCs was assessed by measuring tryptophan fluorescence quenching of HSA by AgNCs. Furthermore, biological implications of protein adsorption were quantitatively explored by evaluating responses of HeLa cells to AgNC exposure through live-cell fluorescence microscopy and a cytotoxicity test, revealing that protein adsorption has a significant effect on the biological response to AgNC exposure.


menu
Abstract
Full text
Outline
About this article

Ultrasmall Fluorescent Silver Nanoclusters: Protein Adsorption and Its Effects on Cellular Responses

Show Author's information Li Shang1René M. Dörlich1Vanessa Trouillet2Michael Bruns2G. Ulrich Nienhaus1,3( )
Institute of Applied Physics and Center for Functional Nanostructures (CFN) Karlsruhe Institute of Technology (KIT) Wolfgang-Gaede-Strasse 1, 76131Karlsruhe Germany
Institute of Materials Research Ⅲ Karlsruhe Institute of Technology (KIT) Hermann-von-Helmholtz-Platz 1, 76344Karlsruhe Germany
Department of Physics, University of Illinois at Urbana-ChampaignUrbanaIllinois 61801 USA

Abstract

Ultrasmall silver nanoclusters (AgNCs) are a novel type of fluorescent nanoprobes that have aroused a great deal of interest in recent years. In view of many promising applications in biological research, it is of great importance to explore their behavior in the complex biological environment. In this study, interactions of AgNCs with a model protein, human serum albumin (HSA), have been systematically investigated by using a variety of techniques including absorption spectroscopy, steady-state and time-resolved fluorescence, as well as circular dichroism spectroscopy. The results show that the physicochemical properties of both proteins and AgNCs undergo changes upon their interactions; however, it appears that the overall conformation of HSA remains essentially unaffected in the complex. Binding of HSA to AgNCs was assessed by measuring tryptophan fluorescence quenching of HSA by AgNCs. Furthermore, biological implications of protein adsorption were quantitatively explored by evaluating responses of HeLa cells to AgNC exposure through live-cell fluorescence microscopy and a cytotoxicity test, revealing that protein adsorption has a significant effect on the biological response to AgNC exposure.

Keywords: cytotoxicity, cellular uptake, Silver nanoclusters, protein adsorption, fluorescent probes

References(58)

1

Cao, Y. C. Nanomaterials for biomedical applications. Nanomedicine 2008, 3, 467–469.

2

Zhang, J. J.; Du, J. J.; Yan, M.; Dhaliwal, A.; Wen, J.; Liu, F. Q.; Segura, T.; Lu, Y. F. Synthesis of protein nano-conjugates for cancer therapy. Nano Res. 2011, 4, 425–433.

3

Chi, X. Q.; Huang, D. T.; Zhao, Z. H.; Zhou, Z. J.; Yin, Z. Y.; Gao, J. H. Nanoprobes for in vitro diagnostics of cancer and infectious diseases. Biomaterials 2012, 33, 189–206.

4

Shang, L.; Dong, S. J.; Nienhaus, G. U. Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications. Nano Today 2011, 6, 401–418.

5

Zheng, J.; Nicovich, P. R.; Dickson, R. M. Highly fluorescent noble-metal quantum dots. Ann. Rev. Phys. Chem. 2007, 58, 409–431.

6

Sharma, J.; Yeh, H. C.; Yoo, H.; Werner, J. H.; Martinez, J. S. A complementary palette of fluorescent silver nanoclusters. Chem. Commun. 2010, 46, 3280–3282.

7

Patel, S. A.; Richards, C. I.; Hsiang, J. C.; Dickson, R. M. Water-soluble Ag nanoclusters exhibit strong two-photon-induced fluorescence. J. Am. Chem. Soc. 2008, 130, 11602–11603.

8

Richards, C. I.; Choi, S.; Hsiang, J. C.; Antoku, Y.; Vosch, T.; Bongiorno, A.; Tzeng, Y. L.; Dickson, R. M. Oligonucleotide-stabilized Ag nanocluster fluorophores. J. Am. Chem. Soc. 2008, 130, 5038–5039.

9

Yuan, X.; Luo, Z. T.; Zhang, Q. B.; Zhang, X. H.; Zheng, Y. G.; Lee, J. Y.; Xie, J. P. Synthesis of highly fluorescent metal (Ag, Au, Pt, and Cu) nanoclusters by electrostatically induced reversible phase transfer. ACS Nano 2011, 5, 8800–8808.

10

Yu, J. H.; Choi, S. M.; Richards, C. I.; Antoku, Y.; Dickson, R. M. Live cell surface labeling with fluorescent Ag nanocluster conjugates. Photochem. Photobiol. 2008, 84, 1435–1439.

11

Diez, I.; Ras, R. H. A. Fluorescent silver nanoclusters. Nanoscale 2011, 3, 1963–1970.

12

Choi, S.; Dickson, R. M.; Yu, J. H. Developing luminescent silver nanodots for biological applications. Chem. Soc. Rev. 2012, 41, 1867–1891.

13

Huang, S.; Pfeiffer, C.; Hollmann, J.; Friede, S.; Chen, J. J. C.; Beyer, A.; Haas, B.; Volz, K.; Heimbrodt, W.; Montenegro Martos, J. M., et al. Synthesis and characterization of colloidal fluorescent silver nanoclusters. Langmuir 2012, 28, 8915–8919.

14

Guo, W. W.; Yuan, J. P.; Dong, Q. Z.; Wang, E. K. Highly sequence-dependent formation of fluorescent silver nanoclusters in hybridized DNA duplexes for single nucleotide mutation identification. J. Am. Chem. Soc. 2010, 132, 932–934.

15

Yu, J.; Patel, S. A.; Dickson, R. M. In vitro and intracellular production of peptide-encapsulated fluorescent silver nanoclusters. Angew. Chem. Int. Ed. 2007, 46, 2028–2030.

16

Yin, J. J.; He, X. X.; Wang, K. M.; Qing, Z. H.; Wu, X.; Shi, H.; Yang, X. H. One-step engineering of silver nanoclusters–aptamer assemblies as luminescent labels to target tumor cells. Nanoscale 2012, 4, 110–112.

17

Cedervall, T.; Lynch, I.; Lindman, S.; Berggård, T.; Thulin, E.; Nilsson, H.; Dawson, K. A.; Linse, S. Understanding the nanoparticle–protein corona using methods to quantify exchange rates and affinities of proteins for nanoparticles. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 2050–2055.

18

Nel, A. E.; Madler, L.; Velegol, D.; Xia, T.; Hoek, E. M. V.; Somasundaran, P.; Klaessig, F.; Castranova, V.; Thompson, M. Understanding biophysicochemical interactions at the nano–bio interface. Nat. Mater. 2009, 8, 543–557.

19

Röcker, C.; Pötzl, M.; Zhang, F.; Parak, W. J.; Nienhaus, G. U. A quantitative fluorescence study of protein monolayer formation on colloidal nanoparticles. Nat. Nanotechnol. 2009, 4, 577–580.

20

Jiang, X.; Weise, S.; Hafner, M.; Röcker, C.; Zhang, F.; Parak, W. J.; Nienhaus, G. U. Quantitative analysis of the protein corona on FePt nanoparticles formed by transferrin binding. J. R. Soc. Interface 2010, 7, S5–S13.

21

Treuel, L.; Nienhaus, G. U. Toward a molecular understanding of nanoparticle–protein interactions. Biophys. Rev. 2012, 4, 137–147.

22

Shang, L.; Brandholt, S.; Stockmar, F.; Trouillet, V.; Bruns, M.; Nienhaus, G. U. Effect of protein adsorption on the fluorescence of ultrasmall gold nanoclusters. Small 2012, 8, 661–665.

23

Lundqvist, M.; Stigler, J.; Elia, G.; Lynch, I.; Cedervall, T.; Dawson, K. A. Nanoparticle size and surface properties determine the protein corona with possible implications for biological impacts. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 14265–14270.

24

Shang, L.; Nienhaus, G. U. Gold nanoclusters as novel optical probes for in vitro and in vivo fluorescence imaging. Biophys. Rev. 2012, DOI: 10.1007/s12551-012-0076-9.

25

Xie, J.; Zheng, Y. G.; Ying, J. Y. Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc. 2009, 131, 888–889.

26

Xavier, P. L.; Chaudhari, K.; Baksi, A.; Pradeep, T. Protein-protected luminescent noble metal quantum clusters: An emerging trend in atomic cluster nanoscience. Nano Rev. 2012, 3, 14767.

27

Adhikari, B.; Banerjee, A. Facile synthesis of water-soluble fluorescent silver nanoclusters and Hg sensing. Chem. Mater. 2010, 22, 4364–4371.

28

Vinelli, A.; Primiceri, E.; Brucale, M.; Zuccheri, G.; Rinaldi, R.; Samorì, B. Sample preparation for the quick sizing of metal nanoparticles by atomic force microscopy. Microsc. Res. Techniq. 2008, 71, 870–879.

29

Shang, L.; Azadfar, N.; Stockmar, F.; Send, W.; Trouillet, V.; Bruns, M.; Gerthsen, D.; Nienhaus, G. U. One-pot synthesis of near-infrared fluorescent gold clusters for cellular fluorescence lifetime imaging. Small 2011, 7, 2614–2620.

30

Petty, J. T.; Zheng, J.; Hud, N. V.; Dickson, R. M. DNA-templated Ag nanocluster formation. J. Am. Chem. Soc. 2004, 126, 5207–5212.

31

Cathcart, N.; Kitaev, V. Silver nanoclusters: single-stage scaleable synthesis of monodisperse species and their chirooptical properties. J. Phys. Chem. C 2010, 114, 16010–16017.

32

Buffat, P. A. Dynamical behaviour of nanocrystals in transmission electron microscopy: Size, temperature or irradiation effects. Philos. T. Roy. Soc. A 2003, 361, 291–295.

33

Baker, M. Nanotechnology imaging probes: Smaller and more stable. Nat. Methods 2010, 7, 957–962.

34

Zhao, S. Q.; Zhou, Y. L.; Zhao, K.; Liu, Z.; Han, P.; Wang, S. F.; Xiang, W. F.; Chen, Z. H.; Lü, H. B.; Cheng, B. L., et al. Violet luminescence emitted from Ag-nanocluster doped ZnO thin films grown on fused quartz substrates by pulsed laser deposition. Physica B 2006, 373, 154–156.

35

Kummer, K.; Vyalikh, D. V.; Gavrila, G.; Kade, A.; Weigel-Jech, M.; Mertig, M.; Molodtsov, S. L. High-resolution photoelectron spectroscopy of self-assembled mercaptohexanol monolayers on gold surfaces. J. Electron Spectrosc. Relat. Phenom. 2008, 163, 59–64.

36

Xavier, P. L.; Chaudhari, K.; Verma, P. K.; Pal, S. K.; Pradeep, T. Luminescent quantum clusters of gold in transferrin family protein, lactoferrin exhibiting FRET. Nanoscale 2010, 2, 2769–2776.

37

Tang, Z. H.; Xu, B.; Wu, B. H.; Germann, M. W.; Wang, G. L. Synthesis and structural determination of multidentate 2, 3-dithiol-stabilized Au clusters. J. Am. Chem. Soc. 2010, 132, 3367–3374.

38

Le Guével, X.; Hötzer, B.; Jung, G.; Hollemeyer, K.; Trouillet, V.; Schneider, M. Formation of fluorescent metal (Au, Ag) nanoclusters capped in bovine serum albumin followed by fluorescence and spectroscopy. J. Phys. Chem. C 2011, 115, 10955–10963.

39

Nallathamby, P. D.; Xu, X. H. N. Study of cytotoxic and therapeutic effects of stable and purified silver nanoparticles on tumor cells. Nanoscale 2010, 2, 942–952.

40

Shang, L.; Wang, Y. Z.; Jiang, J. G.; Dong, S. J. pH-dependent protein conformational changes in albumin: gold nanoparticle bioconjugates: A spectroscopic study. Langmuir 2007, 23, 2714–2721.

41

Xiao, Q.; Huang, S.; Qi, Z. D.; Zhou, B.; He, Z. K.; Liu, Y. Conformation, thermodynamics and stoichiometry of HSA adsorbed to colloidal CdSe/ZnS quantum dots. BBA–Proteins Proteom. 2008, 1784, 1020–1027.

42

Malta, O. L. Energy transfer between molecules and small metallic particles. Phys. Lett. A 1986, 114, 195–197.

43

Lakowicz, J. R. Principles of Fluorescence Spectroscopy. 3rd ed.; Springer: New York, 2006.

DOI
44

Mariam, J.; Dongre, P. M.; Kothari, D. C. Study of interaction of silver nanoparticles with bovine serum albumin using fluorescence spectroscopy. J. Fluoresc. 2011, 21, 2193–2199.

45

Fan, C. H.; Wang, S.; Hong, J. W.; Bazan, G. C.; Plaxco, K. W.; Heeger, A. J. Beyond superquenching: hyper-efficient energy transfer from conjugated polymers to gold nano-particles. Proc. Natl. Acad. Sci. U S A 2003, 100, 6297–6301.

46

Ghosh, S. K.; Pal, A.; Kundu, S.; Nath, S.; Pal, T. Fluorescence quenching of 1-methylaminopyrene near gold nanoparticles: size regime dependence of the small metallic particles. Chem. Phys. Lett. 2004, 395, 366–372.

47

Lacerda, S. H. D.; Park, J. J.; Meuse, C.; Pristinski, D.; Becker, M. L.; Karim, A.; Douglas, J. F. Interaction of gold nanoparticles with common human blood proteins. ACS Nano 2009, 4, 365–379.

48

Zhang, D. M.; Neumann, O.; Wang, H.; Yuwono, V. M.; Barhoumi, A.; Perham, M.; Hartgerink, J. D.; Wittung-Stafshede, P.; Halas, N. J. Gold nanoparticles can induce the formation of protein-based aggregates at physiological pH. Nano Lett. 2009, 9, 666–671.

49

Wang, J.; Jensen, U. B.; Jensen, G. V.; Shipovskov, S.; Balakrishnan, V. S.; Otzen, D.; Pedersen, J. S.; Besenbacher, F.; Sutherland, D. S. Soft interactions at nanoparticles alter protein function and conformation in a size dependent manner. Nano Lett. 2011, 11, 4985–4991.

50

Ohulchanskyy, T. Y.; Roy, I.; Yong, K. T.; Pudavar, H. E.; Prasad, P. N. High-resolution light microscopy using luminescent nanoparticles. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2010, 2, 162–175.

51

Hedde, P. N.; Nienhaus, G. U. Optical imaging of nanoscale cellular structures. Biophys. Rev. 2010, 2, 147–158.

52

Jiang, X. E.; Röcker, C.; Hafner, M.; Brandholt, S.; Dörlich, R. M.; Nienhaus, G. U. Endo- and exocytosis of zwitterionic quantum dot nanoparticles by live HeLa cells. ACS Nano 2010, 4, 6787–6797.

53

Lunov, O.; Zablotskii, V.; Syrovets, T.; Röcker, C.; Tron, K.; Nienhaus, G. U.; Simmet, T. Modeling receptor-mediated endocytosis of polymer-functionalized iron oxide nanoparticles by human macrophages. Biomaterials 2011, 32, 547–555.

54

Iversen, T. G.; Skotland, T.; Sandvig, K. Endocytosis and intracellular transport of nanoparticles: Present knowledge and need for future studies. Nano Today 2011, 6, 176–185.

55

Walczyk, D.; Bombelli, F. B.; Monopoli, M. P.; Lynch, I.; Dawson, K. A. What the cell "sees" in bionanoscience. J. Am. Chem. Soc. 2010, 132, 5761–5768.

56

Zhu, Y.; Li, W. X.; Li, Q. N.; Li, Y. G.; Li, Y. F.; Zhang, X. Y.; Huang, Q. Effects of serum proteins on intracellular uptake and cytotoxicity of carbon nanoparticles. Carbon 2009, 47, 1351–1358.

57

Horie, M.; Nishio, K.; Fujita, K.; Endoh, S.; Miyauchi, A.; Saito, Y.; Iwahashi, H.; Yamamoto, K.; Murayama, H.; Nakano, H., et al. Protein adsorption of ultrafine metal oxide and its influence on cytotoxicity toward cultured cells. Chem. Res. Toxicol. 2009, 22, 543–553.

58

Ge, C. C.; Du, J. F.; Zhao, L. N.; Wang, L. M.; Liu, Y.; Li, D. H.; Yang, Y. L.; Zhou, R. H.; Zhao, Y. L.; Chai, Z. F., et al. Binding of blood proteins to carbon nanotubes reduces cytotoxicity. Proc. Natl. Acad. Sci. U S A 2011, 108, 16968–16973.

Publication history
Copyright
Acknowledgements

Publication history

Received: 21 March 2012
Revised: 27 April 2012
Accepted: 08 June 2012
Published: 06 July 2012
Issue date: August 2012

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2014

Acknowledgements

Acknowledgements

G.U.N. was supported by the Deutsche Forschungs-gemeinschaft (DFG) through the Center for Functional Nanostructures (CFN) and the Priority Program SPP1313. L. S. gratefully acknowledges support from the Alexander von Humboldt (AvH) Foundation. The authors would like to thank Mr. Christoph Panther and Dr. Clemens Franz for help with the AFM measurements.

Return