Journal Home > Volume 5 , Issue 7

We report a facile assay for the rapid visual detection of lipopolysaccharide (LPS) molecules down to the low nanomolar level by taking advantage of the electrostatic interaction between LPS molecules and cysteamine-modified gold nanoparticles (CSH–Au NPs). The large amount of negatively charged groups on the LPS molecules make LPS highly negatively charged. Thus, when modified with cysteamine, the positively charged gold nanoparticles can aggregate in the presence of trace amounts of LPS. The probe is simple, does not require any advanced instrumentation, and the limit of detection (LOD) was determined to be as low as 3.3 × 10−10 mol/L. To the best of our knowledge, it is the most sensitive synthetic LPS sensor reported so far.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

A Facile Assay for Direct Colorimetric Visualization of Lipopolysaccharides at Low Nanomolar Level

Show Author's information Jiayu Sun1Jiechao Ge1Weimin Liu1Xueliang Wang1Zhiyuan Fan1Wenwen Zhao1Hongyan Zhang1Pengfei Wang1( )Shuit-Tong Lee2
Key Laboratory of Photochemical Conversion and Optoelectronic Materials Technical Institute of Physics and Chemistry Chinese Academy of SciencesBeijing 100190 China
Center of Super-Diamond and Advanced Films (COSDAF) and Department of Physics and Materials Science City University of Hong KongHong Kong China

Abstract

We report a facile assay for the rapid visual detection of lipopolysaccharide (LPS) molecules down to the low nanomolar level by taking advantage of the electrostatic interaction between LPS molecules and cysteamine-modified gold nanoparticles (CSH–Au NPs). The large amount of negatively charged groups on the LPS molecules make LPS highly negatively charged. Thus, when modified with cysteamine, the positively charged gold nanoparticles can aggregate in the presence of trace amounts of LPS. The probe is simple, does not require any advanced instrumentation, and the limit of detection (LOD) was determined to be as low as 3.3 × 10−10 mol/L. To the best of our knowledge, it is the most sensitive synthetic LPS sensor reported so far.

Keywords: sensor, gold nanoparticle, Lipopolysaccharide (LPS), endotoxin, Gram-negative

References(41)

1

Seltmann, G.; Holst, O. The Bacterial Cell Wall; Springer: New York, 2002.

DOI
2

Raetz, C. R. H. Biochemistry of Endotoxins. Annu. Rev. Biochem. 1990, 59, 129–170.

3
US FDA, CDER, CBER, CDRH, CVM. Guideline on validation of the Limulus amebocyte lysate test as an end-product endotoxin test for human and animal parenteral drugs, biological products, and medical devices; CDER, CBER, CDRH, CVM (Eds): Rockville, MD, USA, 20857, 1987.
4

Zhang, G. H.; Baek, L.; Nielsen, P. E.; Buchardt, O.; Koch, C. Sensitive quantitation of endotoxin by enzyme-linked immunosorbent assay with monoclonal antibody against Limulus peptide C. J. Clin. Microbiol. 1994, 32, 416–422.

5

Roslansky, P. F.; Novitsky, T. J. Sensitivity of Limulus amebocyte lysate (LAL) to LAL-reactive glucans. J. Clin. Microbiol. 1991, 29, 2477–2483.

6

Rangin, M.; Basu, A. Lipopolysaccharide identification with functionalized polydiacetylene liposome sensors. J. Am. Chem. Soc. 2004, 126, 5038–5039.

7

Voss, S; Fischer, R.; Jung, G.; Wiesmüller, K. -H.; Brock, R. A fluorescence-based synthetic LPS sensor. J. Am. Chem. Soc. 2007, 129, 554–561.

8

Ganesh, V.; Bodewits, K.; Bartholdson, S. J.; Natale, D.; Campopiano, D. J.; Mareque-Rivas J. C. Effective binding and sensing of lipopolysaccharide: Combining complementary pattern recognition receptors. Angew. Chem., Int. Edit. 2009, 48, 356–360.

9

Zeng, L.; Wu, J.; Dai Q.; Liu, W.; Wang, P.; Lee, C. -S. Sensing of bacterial endotoxin in aqueous solution by supramolecular assembly of pyrene derivative. Org. Lett. 2010, 12, 4014–4017.

10

Wu, J. C.; Zawistowski, A.; Ehrmann, M.; Yi, T.; Schmuck, C. Peptide functionalized polydiacetylene liposomes act as a fluorescent turn-on sensor for bacterial lipopolysaccharide. J. Am. Chem. Soc. 2011, 133, 9720–9723.

11

Ghosh, S. K.; Pal, T. Interparticle coupling effect on the surface plasmon resonance of gold nanoparticles: From theory to applications. Chem. Rev. 2007, 107, 4797–4862.

12

Sperling, R. A.; Gil, P. R.; Zhang, F.; Zanella, M.; Parak, W. J. Biological applications of gold nanoparticles. Chem. Soc. Rev. 2008, 37, 1896–1908.

13

Anker, J. N.; Hall, W. P.; Lyandres, O.; Shah, N. C.; Zhao, J.; Van Duyne, R. P. Biosensing with plasmonic nanosensors. Nat. Mater. 2008, 7, 442–453.

14

Nie, Z. H.; Petukhova, A.; Kumacheva, E. Properties and emerging applications of self-assembled structures made from inorganic nanoparticles. Nat. Nanotechnol. 2010, 5, 15–25.

15

Liu, D. B.; Wang, Z.; Jiang, X. Y. Gold nanoparticles for the colorimetric and fluorescent detection of ions and small organic molecules. Nanoscale 2011, 3, 1421–1433.

16

Cai, M.; Li, F.; Zhang, Y.; Wang, Q. B. One-pot polymerase chain reaction with gold nanoparticles for rapid and ultrasensitive DNA detection. Nano Res. 2010, 3, 557–563.

17

Elghanian, R.; Storhoff, J. J.; Mucic, R. C.; Letsinger, R. L.; Mirkin, C. A. Selective colorimetric detection of poly-nucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 1997, 277, 1078–1081.

18

Liu, J. W.; Lu, Y. A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J. Am. Chem. Soc. 2003, 125, 6642–6643.

19

Neely, A.; Perry, C.; Varisli, B.; Singh, A. K.; Arbneshi, T.; Senapati D.; Kalluri, J. R.; Ray, P. C. Ultrasensitive and highly selective detection of Alzheimer’s disease biomarker using two-photon Rayleigh scattering properties of gold nanoparticle. ACS Nano 2009, 3, 2834–2840.

20

Sudeep, P. K.; Joseph, S. T. S.; Thomas, K. G. Selective detection of cysteine and glutathione using gold nanorods. J. Am. Chem. Soc. 2005, 127, 6516–6517.

21

Lee J. -S.; Han, M. S.; Mirkin, C. A. Colorimetric detection of mercuric ion (Hg2+) in aqueous media using DNA-functionalized gold nanoparticles. Angew. Chem. Int. Ed. 2007, 46, 4093–4096.

22

Darbha, G. K.; Ray, A.; Ray, P. C. Gold nanoparticle-based miniaturized nanomaterial surface energy transfer probe for rapid and ultrasensitive detection of mercury in soil, water, and fish. ACS Nano 2007, 1, 208–214.

23

Chi, H;. Liu, B. H.; Guan, G. J.; Zhang, Z. P.; Han, M. -Y. A simple, reliable and sensitive colorimetric visualization of melamine in milk by unmodified gold nanoparticles. Analyst 2010, 135, 1070–1075.

24

Liu, J. W.; Lu, Y. Fast Colorimetric sensing of adenosine and cocaine based on a general sensor design involving aptamers and nanoparticles. Angew. Chem. Int. Ed. 2006, 45, 90–94.

25

Zhou, Y; Wang, S. X.; Zhang, K.; Jiang, X. Y. Visual detection of copper(II) by azide- and alkyne-functionalized gold nanoparticles using click chemistry. Angew. Chem. Int. Ed. 2008, 47, 7454–7456.

26

Jiang, Y.; Zhao, H.; Zhu, N.; Lin, Y.; Yu, P.; Mao, L. A simple assay for direct colorimetric visualization of trinitrotoluene at picomolar levels using gold nanoparticles. Angew. Chem. Int. Ed. 2008, 47, 8601–8604.

27

Ai, K.; Liu, Y. L.; Lu, L. H. Hydrogen-bonding recognition-induced color change of gold nanoparticles for visual detection of melamine in raw milk and infant formula. J. Am. Chem. Soc. 2009, 131, 9496–9497.

28

Dasary, S. S. R.; Singh, A. K.; Senapati, D.; Yu, H. T.; Ray, P. C. Gold nanoparticle based label-free SERS probe for ultrasensitive and selective detection of trinitrotoluene. J. Am. Chem. Soc. 2009, 131, 13806–13812.

29

Wang, L. B.; Zhu, Y. Y.; Xu, L. G.; Chen, W.; Kuang, H.; Liu, L. Q.; Agarwal, A.; Xu, C. L.; Kotov, N. A. Side-by-side and end-to-end gold nanorod assemblies for environmental toxin sensing. Angew. Chem. Int. Ed. 2010, 49, 5472–5475.

30

Jiang, Y.; Zhao, H.; Lin, Y. Q.; Zhu, N. N.; Ma, Y. R.; Mao, L. Q. Colorimetric detection of glucose in rat brain using gold nanoparticles. Angew. Chem. Int. Ed. 2010, 49, 4800–4804.

31

Kong, B.; Zhu, A. W.; Luo, Y. P.; Tian, Y.; Yu, Y. Y.; Shi, G. Y. Sensitive and selective colorimetric visualization of cerebral dopamine based on double molecular recognition. Angew. Chem. Int. Ed. 2011, 50, 1837–1840.

32

Zhang, J.; Wang, L. H.; Pan, D.; Song, S. P.; Boey, F. Y. C.; Zhang, H.; Fan, C. H. Visual cocaine detection with gold nanoparticles and rationally engineered aptamer structures. Small 2008, 4, 1196–1200.

33

Qi, W. J.; Wu, D.; Ling, J.; Huang, C. Z. Visual and light scattering spectrometric detections of melamine with polythymine-stabilized gold nanoparticles through specific triple hydrogen-bonding recognition. Chem. Commun. 2010, 4893–4895.

34

Wu, Z. J.; Zhao, H.; Xue, Y.; Cao, Q.; Yang, J.; He, Y. J.; Li, X. J.; Yuan, Z. B. Colorimetric detection of melamine during the formation of gold nanoparticles. Biosens. Bioelectron. 2011, 26, 2574–2578.

35

Kuang, H.; Chen, W.; Yan, W. J.; Xu, L. G.; Zhu, Y. Y.; Liu, L. Q.; Chu, H. Q.; Peng, C. F.; Wang, L. B.; Kotov, N. A.; Xu, C. L. Crown ether assembly of gold nanoparticles: Melamine sensor. Biosens. Bioelectron. 2011, 26, 2032–2037.

36

Sun, J. Y.; Ge, J. H.; Liu, W. M.; Fan, Z. Y.; Zhang, H. Y.; Wang, P. F. Highly sensitive and selective colorimetric visualization of streptomycin in raw milk using Au nano-particles supramolecular assembly. Chem. Commun. 2011, 9888–9890.

37

Shands, J. W. Evidence for a bilayer structure in Gram-negative lipopolysaccharide—Relationship to toxicity. Infect. Immun. 1971, 4, 167–172.

38

Mayberrycarson, K. J.; Roth, I. L.; Smith, P. F. Ultrastructure of lipopolysaccharide isolated from thermoplasma–acidophilum. J. Bacteriol. 1975, 121, 700–703.

39

Niidome, T.; Nakashima, K.; Takahashi, H.; Niidome, Y. Preparation of primary amine-modified gold nanoparticles and their transfection ability into cultivated cells. Chem. Commun. 2004, 1978–1979.

40

Chan, S.; Horner, S. R.; Fauchet, P. M.; Miller, B. L. Identification of Gram negative bacteria using nanoscale silicon microcavities. J. Am. Chem. Soc. 2001, 123, 11797–11798.

41

Li, C. H.; Budge, L. P.; Driscoll, C. D.; Willardson, B. M.; Allman, G. W.; Savage P. B. Incremental conversion of outer-membrane permeabilizers into potent antibiotics for gram-negative bacteria. J. Am. Chem. Soc. 1999, 121, 931–940.

File
nr-5-7-486_ESM.pdf (466.1 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 March 2012
Revised: 18 May 2012
Accepted: 24 May 2012
Published: 20 June 2012
Issue date: July 2012

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC) (Grant Nos. 21073213, 60978034 and 20903110), the Main Direction Program of Knowledge Innovation of Chinese Academy of Sciences, and the National High Technology Research and Development Program of China (863 Program) (Grant No. 2009AA03Z318).

Return