Journal Home > Volume 5 , Issue 7

We have prepared GaAs wurtzite (WZ)-zinc blende (ZB) nanowire heterostructures by Au particle-assisted metal-organic vapor phase epitaxy (MOVPE) growth. Superior crystal quality of both the transition region between WZ and ZB and of the individual segments themselves was found for WZ-ZB single heterostructures. Pure crystal phases were achieved and the ZB segments were found to be free of any stacking defects, whereas the WZ sections showed a maximum stacking fault density of 20 μm-1. The hexagonal cross-sectional wires are terminated by {1010}-type side facets for the WZ segment and predominantly {110}-type side facets for the ZB part of the wire. A diameter increase occurred after the transition from WZ to ZB. Additionally, facets of the {111}-type as well as downwards-directed overgrowth of the WZ segments were formed at the WZ to ZB transition to compensate for the observed diameter increase and facet rotation. In the case of WZ-ZB multiple heterostructures, we observed slightly higher densities of stacking faults and twin planes compared to single heterostructures.


menu
Abstract
Full text
Outline
About this article

High Crystal Quality Wurtzite-Zinc Blende Heterostructures in Metal-Organic Vapor Phase Epitaxy-Grown GaAs Nanowires

Show Author's information Sebastian Lehmann1( )Daniel Jacobsson1Knut Deppert1Kimberly A. Dick1,2
Solid State Physics Lund UniversityBox 118 S-221 00 Lund, Sweden
Polymer & Materials Chemistry Lund UniversityBox 124 S-221 00 Lund, Sweden

Abstract

We have prepared GaAs wurtzite (WZ)-zinc blende (ZB) nanowire heterostructures by Au particle-assisted metal-organic vapor phase epitaxy (MOVPE) growth. Superior crystal quality of both the transition region between WZ and ZB and of the individual segments themselves was found for WZ-ZB single heterostructures. Pure crystal phases were achieved and the ZB segments were found to be free of any stacking defects, whereas the WZ sections showed a maximum stacking fault density of 20 μm-1. The hexagonal cross-sectional wires are terminated by {1010}-type side facets for the WZ segment and predominantly {110}-type side facets for the ZB part of the wire. A diameter increase occurred after the transition from WZ to ZB. Additionally, facets of the {111}-type as well as downwards-directed overgrowth of the WZ segments were formed at the WZ to ZB transition to compensate for the observed diameter increase and facet rotation. In the case of WZ-ZB multiple heterostructures, we observed slightly higher densities of stacking faults and twin planes compared to single heterostructures.

Keywords: heterostructure, Nanowires, GaAs, polytypism, metal-organic vapor phase epitaxy (MOVPE)-growth

References(17)

1

VJ, L.; Oh, J.; Nayak, A. P.; Katzenmeyer, A. M.; Gilchrist, K. H.; Grego, S.; Kobayashi, N. P.; Wang, S. -Y.; Talin, A. A.; Dhar, N. K. et al. A perspective on nanowire photodetectors: Current status, future challenges, and opportunities. IEEE J. Sel. Top. Quant. 2011, 17, 1002-1032.

2

Sun, K; Kargar, A.; Park, N.; Madsen, K. N.; Naughton, P. W.; Bright, T.; Jing, Y.; Wang, D. Compound semiconductor nanowire solar cells. IEEE J. Sel. Top. Quant. 2011, 17, 1033-1049.

3

Ganjipour, B.; Dey, A. W.; Borg, B. M.; Ek, M.; Pistol, M. -E.; Dick, K. A.; Wernersson, L. -E.; Thelander, C. High current density Esaki tunnel diodes based on GaSb-InAsSb heterostructure nanowires. Nano Lett. 2011, 11, 4222-4226.

4

Tomioka, K.; Fukui, T. Tunnel field-effect transistor using InAs nanowire/Si heterojunction. Appl. Phys. Lett. 2011, 98, 083114.

5

Björk, M. T.; Schmid, H.; Bessire, C. D.; Moselund, K. E.; Ghoneim, H.; Karg, S.; Lörtscher, E.; Riel, H. Si-InAs heterojunction Esaki tunnel diodes with high current densities. Appl. Phys. Lett. 2010, 97, 163501.

6

Thelander, C.; Caroff, P.; Plissard, S.; Dey, A. W.; Dick, K. A. Effects of crystal phase mixing on the electrical properties of InAs nanowires. Nano Lett. 2011, 11, 2424-2429.

7

Caroff, P.; Bolinsson, J.; Johansson, J. Crystal phases in Ⅲ-Ⅴ nanowires: From random toward engineered polytypism. IEEE J. Sel. Top. Quant. 2010, 17, 829-846.

8

Schroer, M. D.; Petta, J. R. Correlating the nanostructure and electronic properties of InAs nanowires. Nano Lett. 2010, 10, 1618-1622.

9

Dick, K. A.; Bolinsson, J.; Messing, M. E.; Lehmann, S.; Johansson, J.; Caroff, P. Parameter space mapping of InAs nanowire crystal structure. J. Vac. Sci. Technol. B 2011, 29, 04D103.

10

Wacaser, B. A.; Deppert, K.; Karlsson, L. S.; Samuelson, L.; Seifert, W. Growth and characterization of defect free GaAs nanowires. J. Cryst. Growth 2006, 287, 504-508.

11

Joyce, H. J.; Gao, Q.; Tan, H. H.; Jagadish, C.; Kim, Y.; Zhang, X.; Guo, Y.; Zou, J. Twin-free uniform epitaxial GaAs nanowires grown by a two-temperature process. Nano Lett. 2007, 7, 921-926.

12

Joyce, H. J.; Gao, Q.; Tan, H. H.; Jagadish, C.; Kim, Y.; Fickenscher, M. A.; Perera, S.; Hoang, T. B.; Smith, L. M.; Jackson, H. E. et al. Unexpected benefits of rapid growth rate for Ⅲ-Ⅴ nanowires. Nano Lett. 2009, 9, 695-701.

13

Plante, M. C.; LaPierre, R. R. Control of GaAs nanowire morphology and crystal structure. Nanotechnology 2008, 19, 495603.

14

Shtrikman, H.; Popovitz-Biro, R.; Kretinin, A.; Heiblum, M. Stacking-faults-free zinc blende GaAs nanowires. Nano Lett. 2009, 9, 215-219.

15

Shtrikman, H.; Popovitz-Biro, R.; Kretinin, A.; Houben, L.; Heiblum, M.; Bukała, M.; Galicka, M.; Buczko, R.; Kacman, P. Method for suppression of stacking faults in wurtzite Ⅲ-Ⅴ nanowires. Nano Lett. 2009, 9, 1506-1510.

16

Joyce, H. J.; Wong-Leung, J.; Gao, Q.; Tan, H. H.; Jagadish, C. Phase perfection in zinc blende and wurtzite Ⅲ-Ⅴ nanowires using basic growth parameters. Nano Lett. 2010, 10, 908-915.

17

Magnusson, M. H.; Deppert, K.; Malm, J. -O.; Bovin, J. -O.; Samuelson, L. Size-selected gold nanoparticles by aerosol technology. Nanostruct. Mater. 1999, 12, 45-48.

Publication history
Copyright
Acknowledgements

Publication history

Received: 06 March 2012
Revised: 09 May 2012
Accepted: 22 May 2012
Published: 22 June 2012
Issue date: July 2012

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012

Acknowledgements

Acknowledgements

S.L. gratefully acknowledges the support by a fellow-ship within the Postdoc-Programme of the German Academic Exchange Service (DAAD). The authors acknowledge financial support from the Nanometer Structure Consortium at Lund University (nmC@LU), the Swedish Research Council (VR), the Swedish Foundation for Strategic Research (SSF), and the Knut and Alice Wallenberg Foundation (KAW). We also thank Magnus Borgström for valuable discussions.

Return