Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
We report the synthesis of near-uniform LiCoO2 nanoplates by a two-step approach in which β-Co(OH)2 nanoplates are synthesized by co-precipitation and then transformed into LiCoO2 nanoplates by solid state reaction at 750 ℃ for 3 hours. Characterization by high-resolution transmission electron microscopy (HRTEM) and electron diffraction (ED) reveal that the as-prepared LiCoO2 nanoplates are covered with many cracks and have exposed (001) planes. The electrochemical performance of the LiCoO2 nanoplates was investigated by galvanostatic tests. The capacity of LiCoO2 nanoplates stabilized at 123 mA·h/g at a rate of 100 mA/g and 113 mA·h/g at a rate of 1000 mA/g after 100 cycles. The excellent rate capability of the LiCoO2 nanoplates results from cracks which are perpendicular to the (001) plane and favor fast Li+ transportation. In addition, compared with other methods of synthesis of LiCoO2 the time of the solid reaction state is significantly shorter even at relatively low temperatures, which means the energy consumption in preparing LiCoO2 is greatly decreased. The controllable synthesis of LiCoO2 nanoplates with exposed (001) plane paves an effective way to develop layered cathode materials with high rate capabilities for use in Li-ion batteries.
Armstrong, A. R.; Bruce, P. G. Synthesis of layered LiMnO2 as an electrode for rechargeable lithium batteries. Nature 1996 381, 499–500.
Gu, X.; Liu, J. L.; Yang, J. H.; Xiang, H. J.; Gong, X. G.; Xia, Y. Y. First-principles study of H+ intercalation in layer-structured LiCoO2. J. Phys. Chem. C 2011 115, 12672–12676.
Aricò, A. S.; Bruce, P.; Scrosati, B.; Tarascon, J. M.; Van Schalkwijk, W. Nanostructured materials for advanced energy conversion and storage devices. Nat. Mater. 2005 4, 366–377.
Wang, Y. G.; Wang, Y. R.; Hosono, E. J.; Wang, K. X.; Zhou, H. S. The design of a LiFePO4/carbon nanocomposite with a core-shell structure and its synthesis by an in situ polymerization restriction method. Angew. Chem. Int. Ed. 2008 47, 7461–7465.
Kang, B.; Ceder, G. Battery materials for ultrafast charging and discharging. Nature 2009 458, 190–193.
Wu, X. L.; Jiang, L. Y.; Cao, F. F.; Guo, Y. G.; Wan, L. J. LiFePO4 nanoparticles embedded in a nanoporous carbon matrix: Superior cathode material for electrochemical energy-storage devices. Adv. Mater. 2009 21, 2710–2714.
Cheng, H.; Lu, Z. G.; Deng, J. Q.; Chung, C. Y.; Zhang, K. L.; Li, Y. Y. A facile method to improve the high rate capability of Co3O4 nanowire array electrodes. Nano Res. 2010 3, 895–901.
Yang, Y.; Liang, Q. Q.; Li, J. H.; Zhuang, Y.; He, Y. H.; Bai, B.; Wang, X. Ni3Si2O5(OH)4 multi-walled nanotubes with tunable magnetic properties and their application as anode materials for lithium batteries. Nano Res. 2011 4, 882–890.
Xiao, X. L.; Yang, L. M.; Zhao, H.; Hu, Z. B.; Li, Y. D. Facile synthesis of LiCoO2 nanowires with high electrochemical performance. Nano Res. 2012 5, 27–32.
Okubo, M.; Hosono, E.; Kim, J.; Enomoto, M.; Kojima, N.; Kudo, T.; Zhou, H. S.; Honma, I. Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode. J. Am. Chem. Soc. 2007 129, 7444–7452.
Jo, M.; Hong, Y. S.; Choo, J.; Cho, J. Effect of LiCoO2 cathode nanoparticle size on high rate performance for Li-ion batteries. J. Electrochem. Soc. 2009 156, A430–A434.
Qian, X.; Cheng, X.; Wang, Z. Y.; Huang, X. J.; Guo, R.; Mao, D. L.; Chang, C. K.; Song, W. J. The preparation of LiCoO2 nanoplates via a hydrothermal process and the investigation of their electrochemical behavior at high rates. Nanotechnology 2009 20, 115608.
Wang, D. S.; Ma, X. L.; Wang, Y. C.; Wang, L.; Wang, Z. Y.; Zheng, W.; He, X. M.; Li, J.; Peng, Q.; Li, Y. D. Shape control of CoO and LiCoO2 nanocrystals. Nano Res. 2010 3, 1–7.
Islam, M. S.; Driscoll, D. J.; Fisher, C. A. J.; Slater, P. R. Atomic-scale investigation of defects, dopants, and lithium transport in the LiFePO4 olivine-type battery material. Chem. Mater. 2005 17, 5085–5092.
Saravanan, K.; Reddy, M. V.; Balaya, P.; Gong, H.; Chowdari, B. V. R.; Vittal, J. J. Storage performance of LiFePO4 nanoplates. J. Mater. Chem. 2009 19, 605–610.
Nan, C. Y.; Lu, J.; Chen, C.; Peng, Q.; Li, Y. D. Solvothermal synthesis of lithium iron phosphate nanoplates. J. Mater. Chem. 2011 21, 9994–9996.
Wei, G. Z.; Lu, X.; Ke, F. S.; Huang, L.; Li, J. T.; Wang, Z. X.; Zhou, Z. Y.; Sun, S. G. Crystal habit-tuned nanoplate material of Li[Li1/3-2x/3NixMn2/3-x/3]O2 for high-rate performance lithium-ion batteries. Adv. Mater. 2010 22, 4364–4367.
Liu, Z. P.; Ma, R. Z.; Osada, M.; Takada, K.; Sasaki, T. Selective and controlled synthesis of α- and β-cobalt hydroxides in highly developed hexagonal platelets. J. Am. Chem. Soc. 2005 127, 13869–13874.
Xu, H. Y.; Xie, S.; Zhang, C. P.; Chen, C. H. Improving the electrochemical behavior of LiCoO2 electrode by mixed Zr-Mg doping. J. Power Sources 2005 148, 90–94.
Ying, J. R.; Jiang, C. Y.; Wan, C. R. Preparation and characterization of high-density spherical LiCoO2 cathode material for lithium ion batteries. J. Power Sources 2004 129, 264–269.
Chen, H. L.; Grey, C. P. Molten salt synthesis and high rate performance of the "Desert-Rose" form of LiCoO2. Adv. Mater. 2008 20, 2206–2210.
Huang, S. H.; Wen, Z. Y.; Yang, X. L.; Gu, Z. H.; Xu, X. H. Improvement of the high-rate discharge properties of LiCoO2 with the Ag additives. J. Power Sources 2005 148, 72–77.