Journal Home > Volume 5 , Issue 6

A panel of silver nanoclusters (Ag NCs) protected by glutathione has been produced by collecting them on a plastic surface during an interfacial etching process. Blue-green, yellow and red emitting Ag NCs with size smaller than 2 nm exhibited distinct fluorescence properties (both emission and lifetime). In particular, the yellow emitting Ag NCs were found to reach a very high quantum yield of over 60% with a monoexponential fluorescence lifetime. These labels show no bleaching and high photostability over time and a high stability for a wide range of pH values. Cytotoxicity tests demonstrated the viability in the presence of of these luminescent probes even at high concentration (1 mg/mL). Cell studies confirmed the uptake of Ag NCs in epithelial lung cancer cells by an endocytotic process. These results show the high potential of fluorescent noble metal nanoclusters for biolabeling and imaging as alternatives to the standard fluorescent probes such as quantum dots or organic dyes.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Highly Fluorescent Silver Nanoclusters Stabilized by Glutathione: A Promising Fluorescent Label for Bioimaging

Show Author's information Xavier Le Guével1Christian Spies2Nicole Daum3Gregor Jung2Marc Schneider1( )
Pharmaceutical Nanotechnology Saarland UniversitySaarbrücken D-66123 Germany
Department of Biophysical Chemistry Saarland UniversitySaarbrücken D-66123 Germany
Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) Helmholtz Center for Infection ResearchSaarbrücken D-66123 Germany

Abstract

A panel of silver nanoclusters (Ag NCs) protected by glutathione has been produced by collecting them on a plastic surface during an interfacial etching process. Blue-green, yellow and red emitting Ag NCs with size smaller than 2 nm exhibited distinct fluorescence properties (both emission and lifetime). In particular, the yellow emitting Ag NCs were found to reach a very high quantum yield of over 60% with a monoexponential fluorescence lifetime. These labels show no bleaching and high photostability over time and a high stability for a wide range of pH values. Cytotoxicity tests demonstrated the viability in the presence of of these luminescent probes even at high concentration (1 mg/mL). Cell studies confirmed the uptake of Ag NCs in epithelial lung cancer cells by an endocytotic process. These results show the high potential of fluorescent noble metal nanoclusters for biolabeling and imaging as alternatives to the standard fluorescent probes such as quantum dots or organic dyes.

Keywords: fluorescence, Metal nanoclusters, cellular uptake, peptide

References(33)

1

Adhikari, B.; Banerjee, A. Facile synthesis of water-soluble fluorescent silver nanoclusters and Hg(Ⅱ) sensing. Chem. Mater. 2010, 22, 4364–4371.

2

Richards, C. I.; Choi, S.; Hsiang, J. -C.; Antoku, Y.; Vosch, T.; Bongiorno, A.; Tzeng, Y. -L.; Dickson, R. M. Oligonucleotide-stabilized Ag nanocluster fluorophores. J. Am. Chem. Soc. 2008, 130, 5038–5039.

3

Belloni, J. Nucleation, growth and properties of nanoclusters studied by radiation chemistry: Application to catalysis. Catal. Today 2006, 113, 141–156.

4

Marambio-Jones, C.; Hoek, E. M. V. A review of the antibacterial effects of silver nanomaterials and potential implications for human health and the environment. J. Nanopart. Res. 2010, 12, 1531–1551.

5

Zheng, J.; Nicovich, P. R.; Dickson, R. M. Highly fluorescent noble metal quantum dots. Annu. Rev. Phys. Chem. 2007, 58, 409–431.

6

Aikens, C. M. Electronic structure of ligand-passivated gold and silver nanoclusters. J. Phys. Chem. Lett. 2011, 2, 99–104.

7

Rance, G. A.; Marsh, D. H.; Khlobystov, A. N. Extinction coefficient analysis of small alkanethiolate-stabilised gold nanoparticles. Chem. Phys. Lett. 2008, 460, 230–236.

8

Le Guével, X; Hötzer, B.; Jung, G.; Hollemeyer, K.; Trouillet, V.; Schneider, M. Formation of fluorescent metal (Au, Ag) nanoclusters capped in bovine serum albumin followed by fluorescence and spectroscopy. J. Phys. Chem. C 2011, 115, 100955–10963.

9

Simms, G. A.; Padmos, J. D.; Zhang, P. Structural and electronic properties of protein/thiolate-protected gold nanocluster with "staple" motif: A XAS, L-DOS, and XPS study. J. Chem. Phys. 2009, 131, 214703.

10

Negishi, Y.; Nobusada, K.; Tsukuda, T. Glutathione-protected gold clusters revisited: Bridging the gap between gold(Ⅰ)-thiolate complexes and thiolate-protected gold nanocrystals. J. Am. Chem. Soc. 2005, 127, 5261–5270.

11

Jin, R. C.; Qian, H. F.; Wu, Z. K.; Zhu, Y.; Zhu, M. Z.; Mohanty, A; Garg, N. Size focusing: A methodology for synthesizing atomically precise gold nanoclusters. J. Phys. Chem. Lett. 2010, 1, 2903–2910.

12

Liu, H. Y.; Zhang, X. A.; Wu, X. M.; Jiang, L. P.; Burda, C.; Zhu, J. -J. Rapid sonochemical synthesis of highly luminescent non-toxic AuNCs and Au@AgNCs and Cu(Ⅱ) sensing. Chem. Comm. 2011, 47, 4237–4239.

13

Ras, R. H. A.; Díez, I. Fluorescent silver nanoclusters. Nanoscale 2011, 3, 1963–1970.

14

Shang, L.; Dong, S. J.; Nienhaus, G. U. Ultra-small fluorescent metal nanoclusters: Synthesis and biological applications. Nano Today 2011, 6, 401–418.

15

Xu, H. X.; Suslick, K. S. Water-soluble fluorescent silver nanoclusters. Adv. Mater. 2010, 22, 1078–1082.

16

Zheng, J.; Petty, J. T.; Dickson, R. M. High quantum yield blue emission from water-soluble Au8 nanodots. J. Am. Chem. Soc. 2003, 125, 7780–7781.

17

Lesniak, W.; Bielinska, A. U.; Sun, K.; Janczak, K. W.; Shi, X. Y.; Baker, J. R.; Balogh, L. P. Silver/dendrimer nano-composites as biomarkers: Fabrication, characterization, in vitro toxicity, and intracellular detection. Nano Lett. 2005, 5, 2123–2130.

18

Narayanan, S. S.; Pal, S. K. Structural and functional characterization of luminescent silver-protein nanobioconjugates. J. Phys. Chem. C 2008, 112, 4874–4879.

19

Rao, T. U. B.; Nataraju, B.; Pradeep, T. Ag9 Quantum Cluster through a Solid-State Route. J. Am. Chem. Soc 2010, 132, 16304–16307.

20

Rao, T. U. B; Pradeep, T. Luminescent Ag7 and Ag8 clusters by interfacial synthesis. Angew. Chem. Int. Ed. 2010, 49, 3925–3929.

21

Maretti, L.; Billone, P. S.; Liu, Y.; Scaiano, J. C. Facile photochemical synthesis and characterization of highly fluorescent silver nanoparticles. J. Am. Chem. Soc. 2009, 131, 13972–13980.

22

Shang, L.; Dong, S. J. Facile preparation of water-soluble fluorescent silver nanoclusters using a polyelectrolyte template. Chem. Comm. 2008, 1088–1090.

23

Xu, H. X.; Suslick, K. S. Sonochemical synthesis of highly fluorescent Ag nanoclusters. ACS Nano 2010, 4, 3209–3214.

24

Kumar, S.; Bolan, M. D. Bigioni, T. P. Glutathione-stabilized magic-number silver cluster compounds. J. Am. Chem. Soc. 2010, 132, 13141–13143.

25

Muhammed, M. A. H.; Ramesh, S.; Sinha, S. S.; Pal, S. K.; Pradeep, T. Two distinct fluorescent quantum clusters of gold starting from metallic nanoparticles by pH-dependent ligand etching. Nano Res. 2008, 1, 333–340.

26

Kubin, R. F.; Fletcher, A. N. Fluorescence quantum yields of some rhodamine dyes. J. Lumin. 1982, 27, 455–462.

27

Zhou, C.; Sun, C.; Yu, M. X.; Qin, Y. P.; Wang, J. G.; Kim, M.; Zheng, J. Luminescent gold nanoparticles with mixed valence states generated from dissociation of polymeric Au(Ⅰ) thiolates. J. Phys. Chem. C 2010, 114, 7727–7732.

28

Mathew, A.; Sajanlal, P. R.; Pradeep, T. A fifteen atom silver cluster confined in bovine serum albumin. J. Mater. Chem. 2011, 21, 11205–11212.

29

Sharma, J.; Yeh, H. -C.; Yoo, H.; Werner, J. H.; Martinez, J. S. A complementary palette of fluorescent silver nanoclusters. Chem. Comm. 2010, 46, 3280–3282.

30

Hinkeldey, B.; Schmitt, A.; Jung, G. Comparative photostability studies of BODIPY and fluorescein dyes by using fluorescence correlation spectroscopy. Chemphyschem 2008, 9, 2019–2027.

31

Patel, S. A.; Cozzuol, M.; Hales, J. M.; Richards, C. I.; Sartin, M.; Hsiang, J. -C.; Vosch, T.; Perry, J. W.; Dickson, R. M. Electron transfer-induced blinking in Ag nanodot fluorescence. J. Phys. Chem. C 2009, 113, 20264–20270.

32

Patel, S. A.; Richards, C. I.; Hsiang, J. -C.; Dickson, R. M. Water-soluble Ag nanoclusters exhibit strong two-photon-induced fluorescence. J. Am. Chem. Soc. 2008, 130, 11602–11603.

33

Polavarapu, L.; Manna, M.; Xu, Q. -H. Biocompatible glutathione capped gold clusters as one- and two-photon excitation fluorescence contrast agents for live cells imaging. Nanoscale 2011, 3, 429–434.

File
nr-5-6-379_ESM.pdf (915.5 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 24 November 2011
Revised: 14 March 2012
Accepted: 04 April 2012
Published: 18 May 2012
Issue date: June 2012

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012

Acknowledgements

Acknowledgements

Xavier Le Guevel thanks the Andalusian Regional Ministry of Health and the “Andalusian Initiative for Advanced Therapies”—Fundacion Progreso y Salud for supporting the research. Thanks to Vanessa Trouillet for the XPS measurements, Chris Schild for the TEM measurements and Dagmar Auerbach for the fluorescence correlation spectroscopy measurements. Petra König is thanked for help with the cytotoxicity evaluation and Leon Muijs for the CLSM imaging. Financial support to Gregor Jung by the German Science Foundation (DFG; JU-650/2-2) is gratefully acknowledged.

Return