Journal Home > Volume 5 , Issue 5

High specific capacitance per area is a critical requirement for a practical supercapacitor electrode, and needs a combination of high mass-loading of the electrochemically active material per area, and high utilization efficiency of this material. However, pursuing high mass-loading on conventional electrodes usually leads to an increase in "dead" material which is not accessible to the electrolyte in the supercapacitor, and thus prevents high utilization efficiencies of the material being realized. Here we show that this antagonism can be overcome by incorporating the electrochemically active material in a mesoporous hierarchical architecture. Fabrication of ternary ordered hierarchical Co3O4@Ni–Co–O nanosheet–nanorod arrays—involving the growth of densely aligned slim Ni–Co–O nanorods (diameter < 20 nm) on Co3O4 microsheets which had been previously loaded on macroporous nickel foam—gives a material with excellent electrochemical performance as a supercapacitor electrode. At a current density of 5 mA/cm2, the electrodes have both high mass loading per area (12 mg/cm2) and high efficiency of 2098 F/g, giving specific capacitances per area as high as ~25 F/cm2. When the current density was increased from 5 to 30 mA/cm2, 72% of the specific capacitance was retained and, furthermore, no significant decrease in capacitance was observed over 1000 charge/discharge cycles. The combination of these merits makes the composite material an excellent candidate for practical application as a supercapacitor electrode and, more generally, highlights the increased efficacies of materials which can result from fabricating mesoporous hierarchical structures at the nanoscale.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Hierarchical Co3O4@Ni–Co–O Supercapacitor Electrodes with Ultrahigh Specific Capacitance per Area

Show Author's information Zhiyi Lu§Qiu Yang§Wei ZhuZheng ChangJunfeng LiuXiaoming Sun( )David G. EvansXue Duan
State Key Laboratory of Chemical Resource EngineeringP.O. Box 98Beijing University of Chemical TechnologyBeijing100029China

§ These authors contributed equally to this work.

Abstract

High specific capacitance per area is a critical requirement for a practical supercapacitor electrode, and needs a combination of high mass-loading of the electrochemically active material per area, and high utilization efficiency of this material. However, pursuing high mass-loading on conventional electrodes usually leads to an increase in "dead" material which is not accessible to the electrolyte in the supercapacitor, and thus prevents high utilization efficiencies of the material being realized. Here we show that this antagonism can be overcome by incorporating the electrochemically active material in a mesoporous hierarchical architecture. Fabrication of ternary ordered hierarchical Co3O4@Ni–Co–O nanosheet–nanorod arrays—involving the growth of densely aligned slim Ni–Co–O nanorods (diameter < 20 nm) on Co3O4 microsheets which had been previously loaded on macroporous nickel foam—gives a material with excellent electrochemical performance as a supercapacitor electrode. At a current density of 5 mA/cm2, the electrodes have both high mass loading per area (12 mg/cm2) and high efficiency of 2098 F/g, giving specific capacitances per area as high as ~25 F/cm2. When the current density was increased from 5 to 30 mA/cm2, 72% of the specific capacitance was retained and, furthermore, no significant decrease in capacitance was observed over 1000 charge/discharge cycles. The combination of these merits makes the composite material an excellent candidate for practical application as a supercapacitor electrode and, more generally, highlights the increased efficacies of materials which can result from fabricating mesoporous hierarchical structures at the nanoscale.

Keywords: cycling stability, Hierarchical structure, nanoarray, pseudocapacitance

References(44)

1

Frackowiak, E.; Beguin, F. Carbon materials for the electro-chemical storage of energy in capacitors. Carbon 2001, 39, 937–950.

2

Zhang, X.; Shi, W.; Zhu, J.; Kharistal, D. J.; Zhao, W.; Lalia, B. S.; Hng, H. H.; Yan, Q. High-power and high-energy-density flexible pseudocapacitor electrodes made from porous CuO nanobelts and single-walled carbon nanotubes. ACS Nano 2011, 5, 2013–2019.

3

Lang, X.; Hirata, A.; Fujita, T.; Chen, M. Nanoporous metal/ oxide hybrid electrodes for electrochemical supercapacitors. Nat. Nanotechnol. 2011, 6, 232–236.

4

Zhang, H. G.; Yu, X. D.; Braun, P. Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nat. Nanotechnol. 2011, 6, 277–281.

5

Zhu, Y.; Murali, S.; Stoller, M. D.; Ganesh, K.; Cai, W.; Ferreira, P. J.; Pirkle, A.; Wallace, R. M.; Cychosz, K. A.; Thommes, M., et al. Carbon-based supercapacitors produced by activation of graphene. Science 2011, 332, 1537–1541.

6

Liu, C.; Li, F.; Ma, L. P.; Cheng, H. M. Advanced materials for energy storage. Adv. Energy. Mater. 2010, 22, E28–E62.

7

Masarapu, C.; Zeng, H. F.; Hung, K. H.; Wei, B. Effect of temperature on the capacitance of carbon nanotube supercapacitors. ACS Nano 2009, 3, 2199–2206.

8

An, K. H.; Kim, W. S.; Park, Y. S.; Moon, J. M.; Bae, D. J.; Lim, S. C.; Lee, Y. S.; Lee, Y. H. Electrochemical properties of high-power supercapacitors using single-walled carbon nanotube electrodes. Adv. Funct. Mater. 2001, 11, 387–392.

DOI
9

Yoo, J. J.; Balakrishnan, K.; Huang, J.; Meunier, V.; Sumpter, B. G.; Srivastava, A.; Conway, M.; Reddy, A. L. M.; Yu, J; Vajtai, R., et al. Ultrathin planar graphene supercapacitors. Nano Lett. 2011, 11, 1423–1427.

10

Wang, H.; Liang, Y.; Mirfakhrai, T.; Chen, Z.; Casalongue, H. S.; Dai, H. Advanced asymmetrical supercapacitors based on graphene hybrid materials. Nano Res. 2011, 4, 729–736.

11

Lang, J. W.; Kong, L. B.; Wu, W. J.; Luo, Y. C.; Kang, L. Facile approach to prepare loose-packed NiO nano-flakes materials for supercapacitors. Chem. Commun. 2008, 4213–4215.

12

Lee, J. W.; Ahn, T.; Kim, J. H.; Ko, J. M.; Kim, J. D. Nanosheets based mesoporous NiO microspherical structures via facile and template-free method for high performance supercapacitors. Electrochim. Acta 2011, 56, 4849–4857.

13

Lu, Q.; Lattanzi, M. W.; Chen, Y.; Kou, X.; Li, W.; Fan, X.; Unruh, K. M.; Chen, J. G.; Xiao, J. Q. Supercapacitor electrodes with high-energy and power densities prepared from monolithic NiO/Ni nanocomposites. Angew. Chem. Int. Ed. 2011, 50, 6847–6850.

14

Xia, X. H.; Tu, J. P.; Wang, X. L.; Gu, C. D.; Zhao, X. B. Mesoporous Co3O4 monolayer hollow-sphere array as electrochemical pseudocapacitor material. Chem. Commun. 2011, 47, 5786–5788.

15

Wang, G.; Liu, H.; Horvat, J.; Wang, B.; Qiao, S.; Park, J.; Ahn, H. Highly ordered mesoporous cobalt oxide nano-structures: Synthesis, characterisation, magnetic properties, and applications for electrochemical energy devices. Chem. Eur. J. 2010, 16, 11020–11027.

16

Xiong, S.; Yuan, C.; Zhang, X.; Xi, B.; Qian, Y. Controllable synthesis of mesoporous Co3O4 nanostructures with tunable morphology for application in supercapacitors. Chem. Eur. J. 2009, 15, 5320–5326.

17

Chen, P. C.; Shen, G.; Shi, Y.; Chen, H.; Zhou, C. Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes. ACS Nano 2010, 4, 4403–4411.

18

Lee, S. W.; Kim, J.; Chen, S.; Hammond, P. T.; Shao-Horn, Y. Carbon nanotube/manganese oxide ultrathin film electrodes for electrochemical capacitors. ACS Nano 2010, 4, 3889–3896.

19

Liu, R.; Duay, J.; Lee, S. B. Redox exchange induced MnO2 nanoparticle enrichment in poly(3, 4-ethylenedioxythiophene) nanowires for electrochemical energy storage. ACS Nano 2010, 4, 4299–4307.

20

Bao, L.; Zang, J.; Li, X. Flexible Zn2SnO4/MnO2 core/shell nanocable–carbon microfiber hybrid composites for high-performance supercapacitor electrodes. Nano Lett. 2011, 11, 1215–1220.

21

Yang, G. W.; Xu, C. L.; Li, H. L. Electrodeposited nickel hydroxide on nickel foam with ultrahigh capacitance. Chem. Commun. 2008, 6537–6539.

22

Yuan, Y.; Xia, X.; Wu, J.; Yang, J.; Chen, Y.; Guo, S. Nickel foam-supported porous Ni(OH)2/NiOOH composite film as advanced pseudocapacitor material. Electrochim. Acta 2011, 56, 2627–2632.

23

Wang, H. L.; Casalongue, H. S.; Liang, Y.; Dai, H. J. Ni(OH)2 nanoplates grown on graphene as advanced electrochemical pseudocapacitor materials. J. Am. Chem. Soc. 2010, 132, 7472–7477.

24

Chang, J. K.; Wu, C. M.; Sun, I. W. Nano-architectured Co(OH)2 electrodes constructed using an easily-manipulated electrochemical protocol for high-performance energy storage applications. J. Mater. Chem. 2010, 20, 3729–3735.

25

Wang, Y.; Zhong, Z.; Chen, Y.; Ng, C. T.; Lin, J. Controllable synthesis of Co3O4 from nanosize to microsize with large-scale exposure of active crystal planes and their excellent rate capability in supercapacitors based on the crystal plane effect. Nano Res. 2011, 4, 695–704.

26

Zhang, X.; Shi, W.; Zhu, J.; Zhao, W.; Ma, J.; Mhaisalkar, S.; Maria, T. L.; Yang, Y.; Zhang, H.; Hng, H. H. Synthesis of porous NiO nanocrystals with controllable surface area and their application as supercapacitor electrodes. Nano Res. 2010, 3, 643–652.

27

Wei, T. Y.; Chen, C. H.; Chien, H. C.; Lu, S. Y.; Hu, C. C. A cost-effective supercapacitor material of ultrahigh specific capacitances: spinel nickel cobaltite aerogels from an epoxide-driven sol–gel process. Adv. Mater. 2010, 22, 347–351.

28

Gao, Y.; Chen, S.; Cao, D.; Wang, G.; Yin, J. Electrochemical capacitance of Co3O4 nanowire arrays supported on nickel foam. J. Power Sources 2010, 195, 1757–1760.

29

Wang, H.; Zhang, L.; Tan, X.; Holt, C. M. B.; Zahiri, B.; Olsen, B. C.; Mitlin, D. Supercapacitive properties of hydrothermally synthesized Co3O4 nanostructures. J. Phys. Chem. C 2011, 115, 17599–17605.

30

Wang, J.; Song, Y.; Li, Z.; Liu, Q.; Zhou, J.; Jing, X.; Zhang, M.; Jiang, Z. In situ Ni/Al layered double hydroxide and its electrochemical capacitance performance. Energy Fuels 2010, 24, 6463–6467.

31

Meng, F.; Ding, Y. Sub micrometer thick all solid state supercapacitors with high power and energy densities. Adv. Mater. 2011, 23, 4098–4102.

32

Hu, C. C.; Chang, K. H.; Lin, M. C.; Wu, Y. T. Design and tailoring of the nanotubular arrayed architecture of hydrous RuO2 for next generation supercapacitors. Nano Lett. 2006, 6, 2690–2695.

33

Yan, J.; Khoo, E.; Sumboja, A.; Lee, P. S. Facile coating of manganese oxide on tin oxide nanowires with high-performance capacitive behavior. ACS Nano 2010, 4, 4247–4255.

34

Liu, J.; Jiang, J.; Cheng, C.; Li, H.; Zhang, J.; Gong, H.; Fan, H. J. Co3O4 nanowire@MnO2 ultrathin nanosheet core/shell arrays: a new class of high-performance pseudocapacitive materials. Adv. Mater. 2011, 23, 2076–2081.

35

Zhou, W.; Cheng, C.; Liu, J.; Tay, Y. Y.; Jiang, J.; Jia, X.; Zhang, J.; Gong, H.; Hng, H. H.; Yu, T.; Fan, H. J. Epitaxial growth of branched α-Fe2O3/SnO2 nano-heterostructures with improved lithium-ion battery performance. Adv. Funct. Mater. 2011, 21, 2439–2445.

36

Lu, Z. Y.; Chang, Z.; Liu, J. F.; Sun, X. M. Stable ultrahigh specific capacitance of NiO nanorod arrays. Nano Res. 2011, 4, 658–665.

37

Lu, Z. Y.; Chang, Z.; Zhu, W.; Sun, X. M. Beta-phased Ni(OH)2 nanowall film with reversible capacitance higher than theoretical Faradic capacitance. Chem. Commun. 2011, 47, 9651–9653.

38

Qing, X.; Liu, S.; Huang, K.; Lv, K.; Yang, Y.; Lu, Z.; Fang, D.; Liang, X. Facile synthesis of Co3O4 nanoflowers grown on Ni foam with superior electrochemical performance. Electrochim. Acta 2011, 56, 4985–4991.

39

Wu, Z. S.; Ren, W.; Wen, L.; Gao, L.; Zhao, J.; Chen, Z.; Zhou, G.; Li, F.; Cheng, H. M. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 2010, 4, 3187–3194.

40

Li, Y.; Hasin, P.; Wu, Y. NixCo3–xO4 nanowire arrays for electrocatalytic oxygen evolution. Adv. Mater. 2010, 22, 1926–1929.

41

Wang, H.; Gao, Q.; Jiang, L. Facile approach to prepare nickel cobaltite nanowire materials for supercapacitors. Small 2011, 7, 2454–2459.

42

Cheng, H.; Lu, Z. G.; Deng, J. Q.; Chung, C.; Zhang, K.; Li, Y. Y. A facile method to improve the high rate capability of Co3O4 nanowire array electrodes. Nano Res. 2010, 3, 895–901.

43

Yang, Y.; Kim, D.; Yang, M.; Schmuki, P. Vertically aligned mixed V2O5–TiO2 nanotube arrays for supercapacitor applications. Chem. Commun. 2011, 47, 7746–7748.

44

Li, Y.; Tan, B.; Wu, Y. Mesoporous Co3O4 nanowire arrays for lithium ion batteries with high capacity and rate capability. Nano Lett. 2008, 8, 265–270.

File
nr-5-5-369_ESM.pdf (542.4 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 22 February 2012
Revised: 24 March 2012
Accepted: 26 March 2012
Published: 11 May 2012
Issue date: May 2012

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012

Acknowledgements

Acknowledgements

We thank Prof. Kaiyin Jiang and Feng Wang for helpful discussion. This work was supported by the National Natural Science Foundation of China (NSFC), the National Basic Research Program of China (973 Program) (2011CBA00503, 2011CB932403), the National High-tech R&D Program of China (863 Program)(Grant No. 2012AA03A609) and the Foundation for Authors of National Excellent Doctoral Dissertations of P. R. China, and the Program for New Century Excellent Talents in Universities.

Return