Journal Home > Volume 5 , Issue 5

A two-dimensional (2D) Si film can form between a graphene overlayer and a Ru(0001) substrate through an intercalation process. At the graphene/2D-Si/Ru(0001) surface, the topmost graphene layer is decoupled from the Ru substrate and becomes quasi-freestanding. The interfacial Si layers show high stability due to the protection from the graphene cover. Surface science measurements indicate that the surface Si atoms can penetrate through the graphene lattice, and density functional theory calculations suggest a Si-C exchange mechanism facilitates the penetration of Si at mild temperatures. The new mechanism may be involved for other elements on graphene, if they can bond strongly with carbon. This finding opens a new route to form 2D interfacial layers between graphene and substrates.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

An exchange intercalation mechanism for the formation of a two-dimensional Si structure underneath graphene

Show Author's information Yi Cui1Junfeng Gao2Li Jin1Jijun Zhao2Dali Tan1Qiang Fu1( )Xinhe Bao1( )
State Key Laboratory of CatalysisDalian Institute of Chemical Physicsthe Chinese Academy of SciencesDalian116023China
Key Laboratory of Materials Modification by LaserIon and Electron Beams (Dalian University of Technology)Ministry of EducationDalian116024China

Abstract

A two-dimensional (2D) Si film can form between a graphene overlayer and a Ru(0001) substrate through an intercalation process. At the graphene/2D-Si/Ru(0001) surface, the topmost graphene layer is decoupled from the Ru substrate and becomes quasi-freestanding. The interfacial Si layers show high stability due to the protection from the graphene cover. Surface science measurements indicate that the surface Si atoms can penetrate through the graphene lattice, and density functional theory calculations suggest a Si-C exchange mechanism facilitates the penetration of Si at mild temperatures. The new mechanism may be involved for other elements on graphene, if they can bond strongly with carbon. This finding opens a new route to form 2D interfacial layers between graphene and substrates.

Keywords: Graphene, silicon, intercalation, Ru(0001), photoemission electron microscopy (PEEM), low energy electron microscopy (LEEM)

References(49)

1

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

2

Kim, K.; Choi, J. Y.; Kim, T.; Cho, S. H.; Chung, H. J. A role for graphene in silicon-based semiconductor devices. Nature 2011, 479, 338–344.

3

Palacios, T. Graphene electronics: Thinking outside the silicon box. Nat. Nanotechnol. 2011, 6, 464–465.

4

Wintterlin, J.; Bocquet, M. L. Graphene on metal surfaces. Surf. Sci. 2009, 603, 1841–1852.

5

Ohta, T.; El Gabaly, F.; Bostwick, A.; McChesney, J. L.; Emtsev, K. V.; Schmid, A. K.; Seyller, T.; Horn, K.; Rotenberg, E. Morphology of graphene thin film growth on SiC(0001). New J. Phys. 2008, 10, 023034.

6

Riedl, C.; Coletti, C.; Iwasaki, T.; Zakharov, A. A.; Starke, U. Quasi-free-standing epitaxial graphene on SiC obtained by hydrogen intercalation. Phys. Rev. Lett. 2009, 103, 246804.

7

Wong, S. L.; Huang, H.; Wang, Y. Z.; Cao, L.; Qi, D. C.; Santoso, I.; Chen, W.; Wee, A. T. S. Quasi-free-standing epitaxial graphene on SiC (0001) by fluorine intercalation from a molecular source. ACS Nano 2011, 5, 7662–7668.

8

Walter, A. L.; Jeon, K. J.; Bostwick, A.; Speck, F.; Ostler, M.; Seyller, T.; Moreschini, L.; Kim, Y. S.; Chang, Y. J.; Horn, K.; Rotenberg, E. Highly p-doped epitaxial graphene obtained by fluorine intercalation. Appl. Phys. Lett. 2011, 98, 184102.

9

Oida, S.; McFeely, F. R.; Hannon, J. B.; Tromp, R. M.; Copel, M.; Chen, Z.; Sun, Y.; Farmer, D. B.; Yurkas, J. Decoupling graphene from SiC(0001) via oxidation. Phys. Rev. B 2010, 82, 041411.

10

Kubler, L.; Aït-Mansour, K.; Diani, M.; Dentel, D.; Bischoff, J. L.; Derivaz, M. Bidimensional intercalation of Ge between SiC(0001) and a heteroepitaxial graphite top layer. Phys. Rev. B 2005, 72, 115319.

11

Virojanadara, C.; Watcharinyanon, S.; Zakharov, A. A.; Johansson, L. I. Epitaxial graphene on 6H-SiC and Li intercalation. Phys. Rev. B 2010, 82, 205402.

12

Varykhalov, A.; Sanchez-Barriga, J.; Shikin, A. M.; Biswas, C.; Vescovo, E.; Rybkin, A.; Marchenko, D.; Rader, O. Electronic and magnetic properties of quasifreestanding graphene on Ni. Phys. Rev. Lett. 2008, 101, 157601.

13

Nagashima, A.; Tejima, N.; Oshima, C. Electronic States of the Pristine and Alkali-Metal-Intercalated Monolayer Graphite/Ni(111) Systems. Phys. Rev. B 1994, 50, 17487–17495.

14

Huang, L.; Pan, Y.; Pan, L. D.; Gao, M.; Xu, W. Y.; Que, Y. D.; Zhou, H. T.; Wang, Y. L.; Du, S. X.; Gao, H. J. Intercalation of metal islands and films at the interface of epitaxially grown graphene and Ru(0001) surfaces. Appl. Phys. Lett. 2011, 99, 163107.

15

Zhang, H.; Fu, Q.; Cui, Y.; Tan, D. L.; Bao, X. H. Growth mechanism of graphene on Ru(0001) and O2 adsorption on the graphene/Ru(0001) surface. J. Phys. Chem. C 2009, 113, 8296–8301.

16

Starodub, E.; Bartelt, N. C.; McCarty, K. F. Oxidation of graphene on metals. J. Phys. Chem. C 2010, 114, 5134–5140.

17

Sutter, P.; Sadowski, J. T.; Sutter, E. A. Chemistry under cover: Tuning metal-graphene interaction by reactive intercalation. J. Am. Chem. Soc. 2010, 132, 8175–8179.

18

Jin, L.; Fu, Q.; Zhang, H.; Mu, R. T.; Zhang, Y. H.; Tan, D. L.; Bao, X. H. Tailoring the growth of graphene on Ru(0001) via engineering of the substrate surface. J. Phys. Chem. C 2012, 116, 2988–2993.

19

Jin, L.; Fu, Q.; Mu, R. T.; Tan, D. L.; Bao, X. H. Pb intercalation underneath a graphene layer on Ru(0001) and its effect on graphene oxidation. Phys. Chem. Chem. Phys. 2011, 13, 16655–16660.

20

Cui, Y.; Fu, Q.; Zhang, H.; Tan, D. L.; Bao, X. H. Dynamic characterization of graphene growth and etching by oxygen on Ru(0001) by photoemission electron microscopy. J. Phys. Chem. C 2009, 113, 20365–20370.

21

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

22

Perdew, J. P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868.

23

Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979.

24

Gao, J. F.; Yip, J.; Zhao, J. J.; Yakobson, B. I.; Ding, F. Graphene nucleation on transition metal surface: Structure transformation and role of the metal step edge. J. Am. Chem. Soc. 2011, 133, 5009–5015.

25

Gao, J. F.; Yuan, Q. H.; Hu, H.; Zhao, J. J.; Ding, F. Formation of carbon clusters in the initial stage of chemical vapor deposition graphene growth on Ni(111) surface. J. Phys. Chem. C 2011, 115, 17695–17703.

26

Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799.

27

Cui, Y.; Fu, Q.; Bao, X. H. Dynamic observation of layer-by-layer growth and removal of graphene on Ru(0001). Phys. Chem. Chem. Phys. 2010, 12, 5053–5057.

28

Wang, B.; Bocquet, M. L.; Marchini, S.; Gunther, S.; Wintterlin, J. Chemical origin of a graphene moire overlayer on Ru(0001). Phys. Chem. Chem. Phys. 2008, 10, 3530–3534.

29

Marchini, S.; Gunther, S.; Wintterlin, J. Scanning tunneling microscopy of graphene on Ru(0001). Phys. Rev. B 2007, 76, 075429.

30

Zhang, H.; Fu, Q.; Cui, Y.; Tan, D. L.; Bao, X. H. Fabrication of metal nanoclusters on graphene grown on Ru(0001). Chin. Sci. Bull. 2009, 54, 2446–2450.

31

Donner, K.; Jakob, P. Structural properties and site specific interactions of Pt with the graphene/Ru(0001) moire overlayer. J. Chem. Phys. 2009, 131, 164701.

32

Zhou, Z. H.; Gao, F.; Goodman, D. W. Deposition of metal clusters on single-layer graphene/Ru(0001): Factors that govern cluster growth. Surf. Sci. 2010, 604, L31–L38.

33

Wang, Z.; Fu, Q.; Bao, X. H. Effect of substrate surface reconstruction on interaction with adsorbates: Pt on 6H-SiC(0001). Langmuir 2010, 26, 7227–7232.

34

Chen, J. G.; Menning, C. A.; Zellner, M. B. Monolayer bimetallic surfaces: Experimental and theoretical studies of trends in electronic and chemical properties. Surf. Sci. Rep. 2008, 63, 201–254.

35

Berkó, A.; Bergbreiter, A.; Hoster, H. E.; Behm, R. J. From bilayer to monolayer growth: Temperature effects in the growth of Ru on Pt(111). Surf. Sci. 2009, 603, 2556–2563.

36

Ma, T.; Fu, Q.; Su, H. Y.; Liu, H. Y.; Cui, Y.; Wang, Z.; Mu, R. T.; Li, W. X.; Bao, X. H. Reversible structural modulation of Fe-Pt bimetallic surfaces and its effect on reactivity. ChemPhysChem 2009, 10, 1013–1016.

37

Himpsel, F. J.; Christmann, K.; Heimann, P.; Eastman, D. E.; Feibelman, P. J. Adsorbate band dispersions for C on Ru(0001). Surf. Sci. 1982, 115, L159–L164.

38

Dedkov, Y. S.; Fonin, M.; Rudiger, U.; Laubschat, C. Graphene-protected iron layer on Ni(111). Appl. Phys. Lett. 2008, 93, 022509.

39

Shikin, A. M.; Adamchuk, V. K.; Rieder, K. H. Formation of quasi-free graphene on the Ni(111) surface with intercalated Cu, Ag, and Au layers. Phys. Solid State 2009, 51, 2390–2400.

40

He, J. W.; Xu, X.; Corneille, J. S.; Goodman, D. W. X-Ray photoelectron spectroscopic characterization of ultra-thin silicon-oxide films on a Mo(100) surface. Surf. Sci. 1992, 279, 119–126.

41

Loffler, D.; Uhlrich, J. J.; Baron, M.; Yang, B.; Yu, X.; Lichtenstein, L.; Heinke, L.; Buchner, C.; Heyde, M.; Shaikhutdinov, S.; Freund, H. J.; Wlodarczyk, R.; Sierka, M.; Sauer, J. Growth and structure of crystalline silica sheet on Ru(0001). Phys. Rev. Lett. 2010, 105, 146104.

42

Sutter, P. W.; Flege, J. I.; Sutter, E. A. Epitaxial graphene on ruthenium. Nat. Mater. 2008, 7, 406–411.

43

Henkelman, G.; Uberuaga, B. P.; Jonsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 2000, 113, 9901–9904.

44

Mao, J. H.; Huang, L.; Pan, Y.; Gao, M.; He, J. F.; Zhou, H. T.; Guo, H. M.; Tian, Y.; Zou, Q.; Zhang, L. Z.; Zhang, H. G.; Wang, Y. L.; Du, S. X.; Zhou, X. J.; Castro Neto, A. H.; Gao, H. J. Silicon layer intercalation of centimeter-scale, epitaxially grown monolayer graphene on Ru(0001). Appl. Phys. Lett. 2012, 100, 093101.

45

Cahangirov, S.; Topsakal, M.; Aktürk, E.; Şahin, H.; Ciraci, S. Two- and one-dimensional honeycomb structures of silicon and germanium. Phys. Rev. Lett. 2009, 102, 236804.

46

Lalmi, B.; Oughaddou, H.; Enriquez, H.; Kara, A.; Vizzini, S.; Ealet, B.; Aufray, B. Epitaxial growth of a silicene sheet. Appl. Phys. Lett. 2010, 97, 223109.

47

Murry, R. L.; Scuseria, G. E. Theoretical evidence for a C60 "window" mechanism. Science 1994, 263, 791–793.

48

Saunders, M.; Jiménez-Vázquez, H. A.; Cross, R. J.; Poreda, R. J. Stable compounds of helium and neon: He@C60 and Ne@C60. Science 1993, 259, 1428–1430.

49

Bunch, J. S.; Verbridge, S. S.; Alden, J. S.; van der Zande, A. M.; Parpia, J. M.; Craighead, H. G.; McEuen, P. L. Impermeable atomic membranes from graphene sheets. Nano Lett. 2008, 8, 2458–2462.

Video
nr-5-5-352_ESM1.avi
nr-5-5-352_ESM2.avi
File
nr-5-5-352_ESM.pdf (532.5 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 04 January 2012
Revised: 17 March 2012
Accepted: 26 March 2012
Published: 11 May 2012
Issue date: May 2012

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012

Acknowledgements

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (No. 21073183, No. 20923001, and No. 21033009), the Ministry of Science and Technology of China (No. 2011CB932700), and the Chinese Academy of Sciences ("Bairen" program).

Return