Graphical Abstract

Discover the SciOpen Platform and Achieve Your Research Goals with Ease.
Search articles, authors, keywords, DOl and etc.
Hematite (α-Fe2O3) nanorod films with their surface tuned by W6+ doping have been investigated as oxygen-evolving photoanodes in photoelectrochemical cells. X-ray diffraction, field emission scanning electron microscopy, UV-visible absorption spectroscopy, and photoelectrochemical (PEC) measurements have been performed on the undoped and W6+-doped α-Fe2O3 nanorod films. W6+ doping is found to primarily affect the photoluminescence properties of α-Fe2O3 nanorod films. Comparisons are drawn between undoped and W6+-doped α-Fe2O3 nanorod films, WO3 films, and α-Fe2O3-modified WO3 composite electrodes. A close correlation between dopant concentration, photoluminescence intensity, and anodic photocurrent was observed. It is suggested that W6+ surface doping promotes charge transfer in α-Fe2O3 nanorods, giving rise to the enhanced PEC performance. These results suggest surface tuning via ion doping should represent a viable strategy to further improve the efficiency of α-Fe2O3 photoanodes.
Bard, A. J.; Fox, M. A. Artificial photosynthesis: Solar splitting of water to hydrogen and oxygen. Acc. Chem. Res. 1995, 28, 141–145.
Alexander, B. D.; Kulesza, P. J.; Rutkowska, L.; Solarska, R.; Augustynski, J. Metal oxide photoanodes for solar hydrogen production. J. Mater. Chem. 2008, 18, 2298–2303.
Kronawitter, C. X.; Vayssieres, L.; Shen, S. H.; Guo, L. J.; Wheeler, D. A.; Zhang, J. Z.; Antoun, B. R.; Mao, S. S. A perspective on solar-driven water splitting with all-oxide hetero-nanostructures. Energ. Environ. Sci. 2011, 4, 3889–3899.
Sivula, K.; Le Formal, F.; Grätzel, M. Solar water splitting: Progress using hematite (α-Fe2O3) photoelectrodes. ChemSusChem 2011, 4, 432–449.
Park, H. G.; Holt, J. K. Recent advances in nanoelectrode architecture for photochemical hydrogen production. Energ. Environ. Sci. 2010, 3, 1028–1036.
van de Krol, R.; Liang, Y. Q.; Schoonman, J. Solar hydrogen production with nanostructured metal oxides. J. Mater. Chem. 2008, 18, 2311–2320.
Kronawitter, C. X.; Mao, S. S.; Antoun, B. R. Doped, porous iron oxide films and their optical functions and anodic photo-currents for solar water splitting. Appl. Phys. Lett. 2011, 98, 092108.
Kay, A.; Cesar, I.; Grätzel, M. New benchmark for water photooxidation by nanostructured α-Fe2O3 films. J. Am. Chem. Soc. 2006, 128, 15714–15721.
Ingler, W. B.; Baltrus, J. P.; Khan, S. U. M. Photoresponse of p-type zinc-doped iron(Ⅲ) oxide thin films. J. Am. Chem. Soc. 2004, 126, 10238–10239.
Kleiman-Shwarsctein, A.; Hu, Y. S.; Forman, A. J.; Stucky, G. D.; McFarland, E. W. Electrodeposition of α-Fe2O3 doped with Mo or Cr as photoanodes for photocatalytic water splitting. J. Phys. Chem. C 2008, 112, 15900–15907.
Glasscock, J. A.; Barnes, P. R. F.; Plumb, I. C.; Savvides, N. Enhancement of photoelectrochemical hydrogen production from hematite thin films by the introduction of Ti and Si. J. Phys. Chem. C 2007, 111, 16477–16488.
Ling, Y. C.; Wang, G. M.; Wheeler, D. A.; Zhang, J. Z.; Li, Y. Sn-doped hematite nanostructures for photoelectrochemical water splitting. Nano Lett. 2011, 11, 2119–2125.
Kumar, P.; Sharma, P.; Shrivastav, R.; Dass, S.; Satsangi, V. R. Electrodeposited zirconium-doped α-Fe2O3 thin film for photoelectrochemical water splitting. Int. J. Hydrogen Energ. 2011, 36, 2777–2784.
Hu, Y. S.; Kleiman-Shwarsctein, A.; Forman, A. J.; Hazen, D.; Park, J. N.; McFarland, E. W. Pt-doped α-Fe2O3 thin films active for photoelectrochemical water splitting. Chem. Mater. 2008, 20, 3803–3805.
Aroutiounian, V. M.; Arakelyan, V. M.; Shahnazaryan, G. E.; Stepanyan, G. M.; Turner, J. A.; Khaselev, O. Investigation of ceramic Fe2O3〈Ta〉 photoelectrodes for solar energy photoelectrochemical converters. Int. J. Hydrogen Energ. 2002, 27, 33–38.
Chen, X. B.; Shen, S. H.; Guo, L. J.; Mao, S. S. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 2010, 110, 6503–6570.
Shen, S. H.; Shi, J. W.; Guo, P. H.; Guo, L. J. Visible-light-driven photocatalytic water splitting on nanostructured semiconducting materials. Int. J. Nanotechnol. 2011, 8, 523–591.
Smith, W.; Wolcott, A.; Fitzmorris, R. C.; Zhang, J. Z.; Zhao, Y. P. Quasi-core-shell TiO2/WO3 and WO3/TiO2 nanorod arrays fabricated by glancing angle deposition for solar water splitting. J. Mater. Chem. 2011, 21, 10792–10800.
Morrish, R.; Rahman, M.; MacElroy, J. M. D.; Wolden, C. A. Activation of hematite nanorod arrays for photoelectrochemical water splitting. ChemSusChem 2011, 4, 474–479.
Shankar, K.; Basham, J. I.; Allam, N. K.; Varghese, O. K.; Mor, G. K.; Feng, X. J.; Paulose, M.; Seabold, J. A.; Choi, K. S.; Grimes, C. A. Recent advances in the use of TiO2 nanotube and nanowire arrays for oxidative photoelectrochemistry. J. Phys. Chem. C 2009, 113, 6327–6359.
Feng, X. J.; LaTempa, T. J.; Basham, J. I.; Mor, G. K.; Varghese, O. K.; Grimes, C. A. Ta3N5 nanotube arrays for visible light water photoelectrolysis. Nano Lett. 2010, 10, 948–952.
Spurgeon, J. M.; Boettcher, S. W.; Kelzenberg, M. D.; Brunschwig, B. S.; Atwater, H. A.; Lewis, N. S. Flexible, polymer-supported, Si wire array photoelectrodes. Adv. Mater. 2010, 22, 3277–3281.
Su, J. Z.; Feng, X. J.; Sloppy, J. D.; Guo, L. J.; Grimes, C. A. Vertically aligned WO3 nanowire arrays grown directly on transparent conducting oxide coated glass: Synthesis and photoelectrochemical properties. Nano Lett. 2011, 11, 203–208.
Zhang, Z. H.; Hossain, M. F.; Takahashi, T. Self-assembled hematite (α-Fe2O3) nanotube arrays for photoelectrocatalytic degradation of azo dye under simulated solar light irradiation. Appl. Catal. B: Environ. 2010, 95, 423–429.
Mao, A.; Shin, K.; Kim, J. K.; Wang, D. H.; Han, G. Y.; Park, J. H. Controlled synthesis of vertically aligned hematite on conducting substrate for photoelectrochemical cells: Nanorods versus nanotubes. ACS Appl. Mater. Interfaces 2011, 3, 1852–1858.
Lindgren, T.; Wang, H. L.; Beermann, N.; Vayssieres, L.; Hagfeldt, A.; Lindquist, S. E. Aqueous photoelectrochemistry of hematite nanorod array. Sol. Energ. Mater. Sol. C. 2002, 71, 231–243.
Vayssieres, L.; Beermann, N.; Lindquist, S. E.; Hagfeldt, A. Controlled aqueous chemical growth of oriented three-dimensional crystalline nanorod arrays: Application to iron(Ⅲ) oxides. Chem. Mater. 2001, 13, 233–235.
de Faria, D. L. A.; Silva, S. V.; de Oliveira, M. T. Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectrosc. 1997, 28, 873–878.
Sartoretti, C. J.; Ulmann, M.; Alexander, B. D.; Augustynski, J.; Weidenkaff, A. Photoelectrochemical oxidation of water at transparent ferric oxide film electrodes. Chem. Phys. Lett. 2003, 376, 194–200.
Zoppi, A.; Lofrumento, C.; Castellucci, E. M.; Migliorini, M. G. The Raman spectrum of hematite: Possible indicator for a compositional or firing distinction among Terra Sigiliata wares. Ann. Chim. 2005, 95, 239–246.
Tarassov, M.; Mihailova, B.; Tarassova, E.; Konstantinov, L. Chemical composition and vibrational spectra of tungsten-bearing goethite and hematite from Western Rhodopes, Bulgaria. Eur. J. Mineral. 2002, 14, 977–986.
Khan, S. U. M.; Akikusa, J. Photoelectrochemical splitting of water at nanocrystalline n-Fe2O3 thin-film electrodes. J. Phys. Chem. B 1999, 103, 7184–7189.
Souza, F. L.; Lopes, K. P.; Nascente, P. A. P.; Leite, E. R. Nanostructured hematite thin films produced by spin-coating deposition solution: Application in water splitting. Sol. Energ. Mater. Sol. C. 2009, 93, 362–368.
Björkstén, U.; Moser, J.; Grätzel, M. Photoelectrochemical studies on nanocrystalline hematite films. Chem. Mater. 1994, 6, 858–863.
Zou, B. S.; Volkov, V. Surface modification on time-resolved fluorescences of Fe2O3 nanocrystals. J. Phys. Chem. Solids 2000, 61, 757–764.
Fei, H.; Ai, X.; Gao, M.; Yang, Y.; Zhang, T.; Shen, J. Luminescence of coated α-Fe2O3 nanoparticles. J. Lumin. 1996, 66–67, 345–348.
Zou, B. S.; Huang, W.; Han, M. Y.; Li, S. F. Y.; Wu, X. C.; Zhang, Y.; Zhang, J. S.; Wu, P. F.; Wang, R.Y. Anomalous optical properties and electron-phonon coupling enhancement in Fe2O3 nanoparticles coated with a layer of stearates. J. Phys. Chem. Solids 1997, 58, 1315–1320.
He, Y. P.; Miao, Y. M.; Li, C. R.; Wang, S. Q.; Cao, L.; Xie, S. S.; Yang, G. Z.; Zou, B. S.; Burda, C. Size and structure effect on optical transitions of iron oxide nanocrystals. Phys. Rev. B 2005, 71, 125411.
Zhang, Y.; Liu, W. J.; Wu, C. F.; Gong, T.; Wei, J. Q.; Ma, M. X.; Wang, K. L.; Zhong, M. L.; Wu, D. H. Photoluminescence of Fe2O3 nanoparticles prepared by laser oxidation of Fe catalysts in carbon nanotubes. Mater. Res. Bull. 2008, 43, 3490–3494.
Hahn, N. T.; Mullins, C. B. Photoelectrochemical performance of nanostructured Ti- and Sn-doped α-Fe2O3 photoanodes. Chem. Mater. 2010, 22, 6474–6482.
Vayssieres, L. On the design of advanced metal oxide nanomaterials. Int. J. Nanotechnology 2004, 1, 1–41.
Spray, R. L.; McDonald, K. J.; Choi, K. S. Enhancing photoresponse of nanoparticulate α-Fe2O3 electrodes by surface composition tuning. J. Phys. Chem. C 2011, 115, 3497–3506.