Journal Home > Volume 5 , Issue 5

We report on epitaxial growth of InP nanowires (NWs) from Cu seed particles by metal-organic vapor phase epitaxy (MOVPE). Vertically-aligned straight nanowires can be achieved in a limited temperature range between 340 ℃ and 370 ℃ as reported earlier. In this paper we present the effect of the Ⅴ/Ⅲ ratio on nanowire morphology, growth rate, and particle configuration at a growth temperature of 350 ℃. Two regimes can be observed in the investigated range of molar fractions. At high Ⅴ/Ⅲ ratios nanowires grow from a solid Cu2In particle. At low Ⅴ/Ⅲ ratios, nanowire growth from two particle types occurs simultaneously: Growth from solid Cu2In particles, and significantly faster growth from In-rich particles. We discuss a possible growth mechanism relying on a dynamic interplay between vapor–liquid–solid (VLS) and vapor–solid–solid (VSS) growth. Our results bring us one step closer to the replacement of Au as seed particle material as well as towards a deeper understanding of particle-assisted nanowire growth.


menu
Abstract
Full text
Outline
About this article

Simultaneous Growth Mechanisms for Cu-Seeded InP Nanowires

Show Author's information Karla Hillerich1( )Kimberly A. Dick1,2Maria E. Messing1Knut Deppert1Jonas Johansson1( )
Solid State PhysicsLund UniversityBox 118SE-22100 LundSweden
Polymer and Materials ChemistryLund UniversityBox 124SE-22100 LundSweden

Abstract

We report on epitaxial growth of InP nanowires (NWs) from Cu seed particles by metal-organic vapor phase epitaxy (MOVPE). Vertically-aligned straight nanowires can be achieved in a limited temperature range between 340 ℃ and 370 ℃ as reported earlier. In this paper we present the effect of the Ⅴ/Ⅲ ratio on nanowire morphology, growth rate, and particle configuration at a growth temperature of 350 ℃. Two regimes can be observed in the investigated range of molar fractions. At high Ⅴ/Ⅲ ratios nanowires grow from a solid Cu2In particle. At low Ⅴ/Ⅲ ratios, nanowire growth from two particle types occurs simultaneously: Growth from solid Cu2In particles, and significantly faster growth from In-rich particles. We discuss a possible growth mechanism relying on a dynamic interplay between vapor–liquid–solid (VLS) and vapor–solid–solid (VSS) growth. Our results bring us one step closer to the replacement of Au as seed particle material as well as towards a deeper understanding of particle-assisted nanowire growth.

Keywords: Nanowires, epitaxy, MOCVD, MOVPE, InP, Cu seed particle

References(35)

1

Dick, K. A. A review of nanowire growth promoted by alloys and non-alloying elements with emphasis on Au-assisted Ⅲ–Ⅴ nanowires. Prog. Cryst. Growth Charact. Mater. 2008, 54, 138–173.

2

Messing, M. E.; Hillerich, K.; Johansson, J.; Deppert, K.; Dick, K. A. The use of gold for fabrication of nanowire structures. Gold Bull. 2009, 42, 172–181.

3

Wen, C. Y.; Reuter, M. C.; Bruley, J.; Tersoff, J.; Kodambaka, S.; Stach, E. A.; Ross, F. M. Formation of compositionally abrupt axial heterojunctions in silicon-germanium nanowires. Science 2009, 326, 1247–1250.

4

Connell, J. G.; Al Balushi, Z. Y.; Sohn, K.; Huang, J. X.; Lauhon, L. J. Growth of Ge nanowires from Au–Cu alloy nanoparticle catalysts synthesized from aqueous solution. J. Phys. Chem. Lett. 2010, 1, 3360–3365.

5

Mandl, B.; Stangl, J.; Hilner, E.; Zakharov, A. A.; Hillerich, K.; Dey, A. W.; Samuelson, L.; Bauer, G.; Deppert, K.; Mikkelsen, A. Growth mechanism of self-catalyzed group Ⅲ–Ⅴ nanowires. Nano Lett. 2010, 10, 4443–4449.

6

Colombo, C.; Spirkoska, D.; Frimmer, M.; Abstreiter, G.; Fontcuberta i Morral, A. Ga-assisted catalyst-free growth mechanism of GaAs nanowires by molecular beam epitaxy. Phys. Rev. B 2008, 77, 155326.

7

Woo, R. L.; Gao, L.; Goel, N.; Hudait, M. K.; Wang, K. L.; Kodambaka, S.; Hicks, R. F. Kinetic control of self-catalyzed indium phosphide nanowires, nanocones, and nanopillars. Nano Lett. 2009, 9, 2207–2211.

8

Plissard, S.; Dick, K. A.; Wallart, X.; Caroff, P. Gold-free GaAs/GaAsSb heterostructure nanowires grown on silicon. Appl. Phys. Lett. 2010, 96, 121901.

9

Morral, A. F. Gold-free GaAs nanowire synthesis and optical properties. IEEE J. Sel. Top. Quantum Electron. 2011, 17, 819–828.

10

Regolin, I.; Khorenko, V.; Prost, W.; Tegude, F. J.; Sudfeld, D.; Kastner, J.; Dumpich, G.; Hitzbleck, K.; Wiggers, H. GaAs whiskers grown by metal-organic vapor-phase epitaxy using Fe nanoparticles. J. Appl. Phys. 2007, 101, 054318.

11

Martelli, F.; Rubini, S.; Piccin, M.; Bais, G.; Jabeen, F.; De Franceschi, S.; Grillo, V.; Carlino, E.; D'Acapito, F.; Boscherini, F., et al. Manganese-induced growth of GaAs nanowires. Nano Lett. 2006, 6, 2130–2134.

12

Wang, G. T.; Talin, A. A.; Werder, D. J.; Creighton, J. R.; Lai, E.; Anderson, R. J.; Arslan, I. Highly aligned, template-free growth and characterization of vertical GaN nanowires on sapphire by metal-organic chemical vapour deposition. Nanotechnology 2006, 17, 5773–5780.

13

Boles, S. T.; Thompson, C. V.; Fitzgerald, E. A. Influence of indium and phosphine on Au-catalyzed InP nanowire growth on Si substrates. J. Cryst. Growth 2009, 311, 1446–1450.

14

Heun, S.; Radha, B.; Ercolani, D.; Kulkarni, G. U.; Rossi, F.; Grillo, V.; Salviati, G.; Beltram, F.; Sorba, L. Pd-assisted growth of InAs nanowires. Cryst. Growth Des. 2010, 10, 4197–4202.

15

Vogel, A. T.; de Boor, J.; Becker, M.; Wittemann, J. V.; Mensah, S. L.; Werner, P.; Schmidt, V. Ag-assisted CBE growth of ordered InSb nanowire arrays. Nanotechnology 2011, 22, 015605.

16

Hillerich, K.; Messing, M. E.; Wallenberg, L. R.; Deppert, K.; Dick, K. A. Epitaxial InP nanowire growth from Cu seed particles. J. Cryst. Growth 2011, 315, 134–137.

17

Hopkins, R. H.; Rohatgi, A. Impurity effects in silicon for high-efficiency solar-cells. J. Cryst. Growth 1986, 75, 67–79.

18

Dubrovskii, V. G.; Sibirev, N. V. General form of the dependences of nanowire growth rate on the nanowire radius. J. Cryst. Growth 2007, 304, 504–513.

19

Rodriguez, J. A.; Kim, J. Y.; Hanson, J. C.; Perez, M.; Frenkel, A. I. Reduction of CuO in H2: In situ time-resolved XRD studies. Catal. Lett. 2003, 85, 247–254.

20

Kim, J. Y.; Rodriguez, J. A.; Hanson, J. C.; Frenkel, A. I.; Lee, P. L. Reduction of CuO and Cu2O with H2: H embedding and kinetic effects in the formation of suboxides. J. Am. Chem. Soc. 2003, 125, 10684–10692.

21

Kodambaka, S.; Tersoff, J.; Reuter, M. C.; Ross, F. M. Germanium nanowire growth below the eutectic temperature. Science 2007, 316, 729–732.

22

Okamoto, H. Cu–In (copper–indium). J. Phase Equilib. Diffus. 2005, 26, 645.

23

Gamalski, A. D.; Tersoff, J.; Sharma, R.; Ducati, C.; Hofmann, S. Formation of metastable liquid catalyst during subeutectic growth of germanium nanowires. Nano Lett. 2010, 10, 2972–2976.

24

Vogel, A. T.; de Boor, J.; Wittemann, J. V.; Mensah, S. L.; Werner, P.; Schmidt, V. Fabrication of high-quality InSb nanowire arrays by chemical beam epitaxy. Cryst. Growth Des. 2011, 11, 1896–1900.

25
Mattila, M. Self-assembled indium phosphide nanowires. Dissertation for the degree of Doctor of Science in Technology, Helsinki University of Technology: Helsinki, 2007.
26

Novotny, C. J.; Yu, P. K. L. Vertically aligned, catalyst-free InP nanowires grown by metalorganic chemical vapor deposition. Appl. Phys. Lett. 2005, 87, 203111.

27

Ritter, D.; Heinecke, H. Evaluation of cracking efficiency of As and P precursors. J. Cryst. Growth 1997, 170, 149–154.

28

Messing, M. E.; Hillerich, K.; Bolinsson, J.; Storm, K.; Johansson, J.; Dick, K. A.; Deppert, K. A comparative study of the effect of gold seed particle preparation method on nanowire growth. Nano Res. 2010, 3, 506–519.

29

Heun, S.; Radha, B.; Ercolani, D.; Kulkarni, G. U.; Rossi, F.; Grillo, V.; Salviati, G.; Beltram, F.; Sorba, L. Coexistence of vapor–liquid–solid and vapor–solid–solid growth modes in Pd-assisted InAs nanowires. Small 2010, 6, 1935–1941.

30

Wallentin, J.; Ek, M.; Wallenberg, L. R.; Samuelson, L.; Deppert, K.; Borgström, M. T. Changes in contact angle of seed particle correlated with increased zinc blende formation in doped InP nanowires. Nano Lett. 2010, 10, 4807–4812.

31

Buchan, N. I.; Larsen, C. A.; Stringfellow, G. B. A mass-spectrometric study of the simultaneous reaction-mechanism of TMIn and PH3 to grow InP. J. Cryst. Growth 1988, 92, 605–615.

32

Larsen, C. A.; Buchan, N. I.; Stringfellow, G. B. Mass-spectrometric studies of phosphine pyrolysis and OMVPE growth of InP. J. Cryst. Growth 1987, 85, 148–153.

33

Paiman, S.; Gao, Q.; Joyce, H. J.; Kim, Y.; Tan, H. H.; Jagadish, C.; Zhang, X.; Guo, Y.; Zou, J. Growth temperature and Ⅴ/Ⅲ ratio effects on the morphology and crystal structure of InP nanowires. J. Phys. D-Appl. Phys. 2010, 43, 445402.

34

Mattila, M.; Hakkarainen, T.; Lipsanen, H. Catalyst-free fabrication of InP and InP(N) nanowires by metalorganic vapor phase epitaxy. J. Cryst. Growth 2007, 298, 640–643.

35

Goncharova, L. V.; Clowes, S. K.; Fogg, R. R.; Ermakov, A. V.; Hinch, B. J. Phosphine adsorption and the production of phosphide phases on Cu(001). Surf. Sci. 2002, 515, 553–566.

Publication history
Copyright
Acknowledgements

Publication history

Received: 01 March 2012
Accepted: 08 March 2012
Published: 11 May 2012
Issue date: May 2012

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012

Acknowledgements

Acknowledgements

This work was performed within the Nanometer Structure Consortium at Lund University (nmC@LU) and supported financially by the Swedish Research Council (VR), the Swedish Foundation for Strategic Research (SSF) and the Knut and Alice Wallenberg Foundation (KAW). Furthermore this report is based on a project which was funded by E.ON AG as part of the E.ON International Research Initiative. Responsibility for the content of this publication lies with the authors.

The authors thank Alexander Vogel, Bernhard Mandl and Sebastian Lehmann for valuable discussions, Kristian Storm for the development of the nanowire dimension analysis software, and Oscar Hallbäck and Elvedin Memisevic for measurements of the nanowire dimensions.

Return