Journal Home > Volume 5 , Issue 4

A facile method of synthesizing Fe3O4–Au hybrid nanoparticles is reported utilizing the multifunctional nature of polyethyleneimine (PEI). An abundance of 5 nm gold nanoparticles were attached to 50 nm Fe3O4 nanoparticles via the covalent binding between the −NH2 groups of the PEI and Au nanoparticles, as well as the electrostatic interaction between the negatively charged citrate-coated Au nanoparticles and the positively charged PEI-coated Fe3O4 nanoparticles. The as-prepared Fe3O4–Au hybrid nanoparticles, which combine the merits of magnetic materials and gold, were successfully employed for the first time in the dual-mode detection of carcinoembryonic antigen (CEA) via electrochemical and surface-enhanced Raman scattering (SERS) methods. Both methods make clever use of Fe3O4–Au nanoparticles and can accurately verify the presence of antigens. In particular, the electrochemical immunosensor detection displays a wide linear range (0.01–10 ng/mL) of response with a low detection limit (10 pg/mL), while the SERS method responds to even lower antigen concentrations with a wider detection range. The Fe3O4–Au hybrid nanoparticles therefore exhibit great potential for biomedical applications.


menu
Abstract
Full text
Outline
About this article

Dual-Mode Protein Detection Based on Fe3O4–Au Hybrid Nanoparticles

Show Author's information Lei Lou1Ke Yu1( )Zhengli Zhang1Rong Huang1Jianzhong Zhu1Yiting Wang2Ziqiang Zhu1
Key Laboratory of Polar Materials and Devices (Ministry of Education of China), Department of Electronic EngineeringEast China Normal UniversityShanghai200241China
Institute for Advanced Interdisciplinary ResearchEast China Normal UniversityShanghai200062China

Abstract

A facile method of synthesizing Fe3O4–Au hybrid nanoparticles is reported utilizing the multifunctional nature of polyethyleneimine (PEI). An abundance of 5 nm gold nanoparticles were attached to 50 nm Fe3O4 nanoparticles via the covalent binding between the −NH2 groups of the PEI and Au nanoparticles, as well as the electrostatic interaction between the negatively charged citrate-coated Au nanoparticles and the positively charged PEI-coated Fe3O4 nanoparticles. The as-prepared Fe3O4–Au hybrid nanoparticles, which combine the merits of magnetic materials and gold, were successfully employed for the first time in the dual-mode detection of carcinoembryonic antigen (CEA) via electrochemical and surface-enhanced Raman scattering (SERS) methods. Both methods make clever use of Fe3O4–Au nanoparticles and can accurately verify the presence of antigens. In particular, the electrochemical immunosensor detection displays a wide linear range (0.01–10 ng/mL) of response with a low detection limit (10 pg/mL), while the SERS method responds to even lower antigen concentrations with a wider detection range. The Fe3O4–Au hybrid nanoparticles therefore exhibit great potential for biomedical applications.

Keywords: Fe3O4, Au, surface-enhanced Raman scattering, electrochemical immunosensor

References(23)

1

Gu, H. W.; Xu, K. M.; Xu, C. J.; Xu, B. Biofunctional magnetic nanoparticles for protein separation and pathogen detection. Chem. Commun. 2006, 941–949.

2

Mahmoudi, M.; Simchi, A.; Imani, M.; Milani, A. S.; Stroeve, P. Optimal design and characterization of superparamagnetic iron oxide nanoparticles coated with polyvinyl alcohol for targeted delivery and imaging. J. Phys. Chem. B 2008, 112, 14470–14481.

3

Nielsen, O. S.; Horsman, M.; Overgaard, J. A future for hyperthermia in cancer treatment? Eur. J. Cancer. 2001, 37, 1587–1589.

4

Hultman, K. L.; Raffo, A. J.; Grzenda, A. L.; Harris, P. E.; Brown, T. R.; O'Brien, S. Magnetic resonance imaging of major histocompatibility class Ⅱ expression in the renal medulla using immunotargeted superparamagnetic iron oxide nanoparticles. ACS Nano 2008, 2, 477–484.

5

Wu, Z. K.; Jin, R. C. On the ligand's role in the fluorescence of gold nanoclusters. Nano Lett. 2010, 10, 2568–2573.

6

Daniel, M. C.; Astruc, D. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 2004, 104, 293–346.

7

Lyon, J. L.; Fleming, D. A.; Stone, M. B.; Schiffer, P.; Williams, M. E. Synthesis of Fe oxide core/Au shell nano-particles by iterative hydroxylamine seeding. Nano Lett. 2004, 4, 719–723.

8

Cho, S. J.; Idrobo, J. C.; Olamit, J.; Liu, K.; Browning, N. D.; Kauzlarich, S. M. Growth mechanisms and oxidation resistance of gold-coated iron nanoparticles. Chem. Mater. 2005, 17, 3181–3186.

9

Lin, F. H.; Chen, W.; Liao, Y. H.; Doong, R. A.; Li, Y. D. Effective approach for the synthesis of nonodisperse magnetic nanocrystals and M–Fe3O4 (M = Ag, Au, Pt, Pd) heterostructures. Nano Res. 2011, 4, 1223–1232.

10

Wu, J. J.; Hou, Y. L.; Gao, S. Controlled synthesis and multifunctional properties of FePt–Au heterostructures. Nano Res. 2011, 4, 836–848.

11

Xu, C. J.; Wang, B. D.; Sun, S. H. Dumbbell-like Au–Fe3O4 nanoparticles for target-specific platin delivery. J. Am. Chem. Soc. 2009, 131, 4216–4217.

12

Gold, P.; Freedman, S. O. Demonstration of tumor-specific antigens in human colonic carcinomata by immunological and absorption techniques. J. Exp. Med. 1965, 121, 439–462.

13

Li, N.; Zhao, H. W.; Yuan, R.; Peng, K. F.; Chai, Y. Q. An amperometric immunosensor with a DNA polyion complex membrane/gold nanoparticles-backbone for antibody immobilisation. Electrochim. Acta 2008, 54, 235–241.

14

Lin, J. H.; Qu, W.; Zhang, S. S. Electrochemical immunosensor for carcinoembryonic antigen based on antigen immobilization in gold nanoparticles modified chitosan membrane. Anal. Sci. 2007, 23, 1059–1063.

15

Tan, F.; Yan, F.; Ju, H. X. A designer ormosil gel for preparation of sensitive immunosensor for carcinoembryonic antigen based on simple direct electron transfer. Electrochem. Commun. 2006, 8, 1835–1839.

16

Berger, P.; Adelman, N. B.; Beckman, K. J.; Campbell, D. J.; Ellis, A. B.; Lisensky, G. C. Preparation and properties of an aqueous ferrofluid. J. Chem. Educ. 1999, 76, 943–948.

17

Jana, N. R.; Gearheart, L.; Murphy, C. J. Seeding growth for size control of 5–40 nm diameter gold nanoparticles. Langmuir 2001, 17, 6782–6786.

18

McAllister, M. J.; Li, J. L.; Adamson, D. H.; Schniepp, H. C.; Abdala, A. A.; Liu, J.; Herrera-Alonso, M.; Milius, D. L.; Car, R.; Prud'homme, R. K.; Aksay, I. A. Single sheet functionalized graphene by oxidation and thermal expansion of graphite. Chem. Mater. 2007, 19, 4396–4404.

19

Ni, J.; Lipert, R. J.; Dawson, G. B.; Porter, M. D. Immunoassay readout method using extrinsic Raman labels adsorbed on immunogold colloids. Anal. Chem. 1999, 71, 4903–4908.

20

Bohren, C. F.; Huffman, D. R. In Absorption and Scattering of Light by Small Particles. Wiley, New York, 1983.

21

Wang, L. Y.; Luo, J.; Fan, Q.; Suzuki, M.; Suzuki, I. S.; Engelhard, M. H.; Lin, Y. H.; Kim, N.; Wang, J. Q.; Zhong, C. J. Monodispersed core–shell Fe3O4@Au nanoparticles. J. Phys. Chem. B 2005, 109, 21593–21601.

22

Lee, Y. M.; Garcia, M. A.; Huls, N. A. F.; Sun, S. H. Synthetic tuning of the catalytic properties of Au–Fe3O4 nanoparticles. Angew. Chem. Int. Edit. 2010, 49, 1271–1274.

23

Michota, A.; Bukowska, J. Surface-enhanced Raman scattering (SERS) of 4-mercaptobenzoic acid on silver and gold substrates. J. Raman Spectrosc. 2003, 34, 21–25.

Publication history
Copyright
Acknowledgements

Publication history

Received: 08 February 2012
Revised: 28 February 2012
Accepted: 29 February 2012
Published: 23 March 2012
Issue date: April 2012

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012

Acknowledgements

Acknowledgements

The authors acknowledge the financial support from the National Natural Science Foundation of China (NSFC) (Grants Nos. 60976014, 60976004 and 11074075) and the Key Basic Research Project of the Scientific and Technology Committee of Shanghai (Grant No. 09DJ1400200).

Return