Journal Home > Volume 5 , Issue 4

Molecular heterojunctions, such as the one based on copper phthalocyanine (CuPc) and carbon fullerene (C60) molecules, are commonly employed in organic photovoltaic cells as electron donor–acceptor pairs. We have investigated the different atomic structures and electronic and optical properties of the C60/CuPc heterojunction through first-principles calculations based on density functional theory (DFT) and time-dependent DFT. In general, configurations with the CuPc molecule "lying down" on C60 are energetically more favorable than configurations with the CuPc molecule "standing up". The lying-down configurations also facilitate charge transfer between the two molecules, due to the stronger interaction and the larger overlap between electronic wavefunctions at the interface. The energetically preferred structure consists of CuPc placed so that the Cu atom is above a bridge site of C60, with one N–Cu–N bond of CuPc being parallel to a C–C bond of C60. We also considered the structure of a periodic CuPc monolayer deposited on the (001) surface of a face-centered cubic (fcc) crystal of C60 molecules with the lying-down orientation and on the (111) surface with the standing-up configuration. We find that the first arrangement can lead to larger open circuit voltage due to an enhanced electronic interaction between CuPc and C60 molecules.


menu
Abstract
Full text
Outline
About this article

Theoretical Investigation of the C60/Copper Phthalocyanine Organic Photovoltaic Heterojunction

Show Author's information Jun Ren1,2Sheng Meng3( )Efthimios Kaxiras4
State Key Laboratory for Low-Dimensional Quantum Physics, Department of PhysicsTsinghua UniversityBeijing100084China
Institut des MatériauxÉcole Polytechnique Fédérale Lausanne (EPFL)LausanneCH-1015Switzerland
Beijing National Laboratory for Condensed Matter Physics, and Institute of PhysicsChinese Academy of SciencesBeijing100190China
Department of Physics and School of Engineering and Applied SciencesHarvard UniversityCambridge MA02138USA

Abstract

Molecular heterojunctions, such as the one based on copper phthalocyanine (CuPc) and carbon fullerene (C60) molecules, are commonly employed in organic photovoltaic cells as electron donor–acceptor pairs. We have investigated the different atomic structures and electronic and optical properties of the C60/CuPc heterojunction through first-principles calculations based on density functional theory (DFT) and time-dependent DFT. In general, configurations with the CuPc molecule "lying down" on C60 are energetically more favorable than configurations with the CuPc molecule "standing up". The lying-down configurations also facilitate charge transfer between the two molecules, due to the stronger interaction and the larger overlap between electronic wavefunctions at the interface. The energetically preferred structure consists of CuPc placed so that the Cu atom is above a bridge site of C60, with one N–Cu–N bond of CuPc being parallel to a C–C bond of C60. We also considered the structure of a periodic CuPc monolayer deposited on the (001) surface of a face-centered cubic (fcc) crystal of C60 molecules with the lying-down orientation and on the (111) surface with the standing-up configuration. We find that the first arrangement can lead to larger open circuit voltage due to an enhanced electronic interaction between CuPc and C60 molecules.

Keywords: interface, heterojunction, Organic solar cell, ab initio, time-dependent density functional theory

References(32)

1

Hong, Z. R.; Maennig, B.; Lessmann, R.; Pfeiffer, M.; Leo, K.; Simon, P. Improved efficiency of zinc phthalocyanine/C60 based photovoltaic cells via nanoscale interface modification. Appl. Phys. Lett. 2007, 90, 203505.

2

Akaike, K.; Kanai, K.; Ouchi, Y.; Seki, K. Impact of ground-state charge transfer and polarization energy change on energy band offsets at donor/acceptor interface in organic photovoltaics. Adv. Funct. Mater. 2010, 20, 715–721.

3

Ichikawa, M.; Suto, E.; Jeon, H. G.; Taniguchi, Y. Sensitization of organic photovoltaic cells based on interlayer excitation energy transfer. Org. Electron. 2010, 11, 700–704.

4

Tang, C. W. Two-layer organic photovoltaic cell. Appl. Phys. Lett. 1986, 48, 183–185.

5

Chan, M. Y.; Lai, S. L.; Fung, M. K.; Lee, C. S.; Lee, S. T. Doping-induced efficiency enhancement in organic photovoltaic devices. Appl. Phys. Lett. 2007, 90, 023504.

6

Xue, J. G.; Uchida, S.; Rand, B. P.; Forrest, S. R. Asymmetric tandem organic photovoltaic cells with hybrid planar-mixed molecular heterojunctions. Appl. Phys. Lett. 2004, 85, 5757–5759.

7

Kim, J. Y.; Lee, K.; Coates, N. E.; Moses, D.; Nguyen, T. Q.; Dante, M.; Heeger, A. J. Efficient tandem polymer solar cells fabricated by all-solution processing. Science 2007, 317, 222–225.

8

Wang, E. G.; Wang, L.; Lan, L. F.; Luo, C.; Zhuang, W. L.; Peng, J. B.; Cao, Y. High-performance polymer heterojunction solar cells of a polysilafluorene derivative. Appl. Phys. Lett. 2008, 92, 033307.

9

Hiramoto, M.; Sakai, K. Efficient organic p-i-n solar cells having very thick codeposited i-layer composed of highly purified organic semiconductors. Proc. of SPIE 2008, 7052, 70520H.

10

Park, S. H.; Roy, A.; Beaupre, S.; Cho, S.; Coates, N.; Moon, J. S.; Moses, D.; Leclerc, M.; Lee, K.; Heeger, A. J. Bulk heterojunction solar cells with internal quantum efficiency approaching 100%. Nat. Photonics 2009, 3, 297–302.

11

Ray, A.; Goswami, D.; Chattopadhyay, S.; Bhattacharya, S. Photophysical and theoretical investigations on fullerene/phthalocyanine supramolecular complexes. J. Phys. Chem. A 2008, 112, 11627–11640.

12

Huang, H.; Chen, W.; Chen, S.; Qi, D. C.; Gao, X. Y.; Wee, A. T. S. Molecular orientation of CuPc thin films on C60/Ag(111). Appl. Phys. Lett. 2009, 94, 163304.

13

Fendrich, M.; Wagner, T.; Stöhr, M.; Möller, R. Hindered rotation of a copper phthalocyanine molecule on C60: Experiments and molecular mechanics calculations. Phys. Rev. B 2006, 73, 115433.

14

Zhou, Y. C.; Liu, Z. T.; Tang, J. X.; Lee, C. S.; Lee, S. T. Substrate dependence of energy level alignment at the donor-acceptor interface in organic photovoltaic devices. J. of Electron. Spectrosc. Relat. Phenom. 2009, 174, 35–39.

15

Bernède, J. C.; Berredjem, Y.; Cattin, L.; Morsli, M. Improvement of organic solar cell performances using a zinc oxide anode coated by an ultrathin metallic layer. Appl. Phys. Lett. 2008, 92, 083304.

16

Dutton, G. J.; Jin, W.; Reutt-Robey, J. E.; Robey, S. W. Ultrafast charge-transfer processes at an oriented phthalocyanine/C60 interface. Phys. Rev. B 2010, 82, 073407.

17

Huang, Y. L.; Li, H.; Ma, J.; Huang, H.; Chen, W.; Wee, A. T. S. Scanning tunneling microscopy investigation of self-assembled CuPc/F16CuPc binary superstructures on graphite. Langmuir 2010, 26, 3329–3334.

18

Manandhar, K.; Ellis, T.; Park, K. T.; Cai, T.; Song, Z.; Hrbek, J. A scanning tunneling microscopy study on the effect of post-deposition annealing of copper phthalocyanine thin films. Surf. Sci. 2007, 601, 3623–3631.

19

Karacuban, H.; Lange, M.; Schaffert, J.; Weingart, O.; Wagner, Th.; Möller, R. Substrate-induced symmetry reduction of CuPc on Cu(111): An LT-STM study. Surf. Sci. 2009, 603, L39–L43.

20

Godlewski, S.; Tekiel, A.; Prauzner-Bechcicki, J. S.; Budzioch, J.; Szymonski, M. Controlled reorientation of CuPc molecules in ordered structures assembled on the TiO2(011)-(2 × 1) surface. ChemPhysChem 2010, 11, 1863–1866.

21

Collins, G. E.; Williams, V. S.; Chau, L. K.; Nebesny, K. W.; England, C.; Lee, P. A.; Lowe, T.; Fernando Q.; Armstrong, N. R. Epitaxial phthalocyanine thin films and phthalocyanine/C60 multilayers. Synth. Met. . 1993, 54, 351–362.

22

Chen, D.; Sarid, D. Growth of C60 films on silicon surfaces. Surf. Sci. 1994, 318, 74–82.

23

Dresselhaus, M. S.; Dresselhaus, G.; Eklund, P. C. Science of Fullerenes and Carbon Nanotubes; Academic Press: San Diego, 1996.

DOI
24

Troullier, N.; Martins, J. L. Efficient pseudopotentials for plane-wave calculations. Phys. Rev. B 1991, 43, 1993–2006.

25

Ceperley, D. M.; Alder, B. J. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 1980, 45, 566–569.

26

Soler, J. M.; Artacho, E.; Gale, J. D.; Garcia, A.; Junquera, J.; Ordejon, P.; Sanchez-Portal, D. The SIESTA method for ab initio order-N materials simulation. J. Phys: Condens. Matter 2002, 14, 2745–2779.

27

Dion, M.; Rydberg, H.; Schröder, E.; Langreth, D. C.; Lundqvist, B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 2004, 92, 246401.

28

Tsolakidis, A.; Sánchez-Portal, D.; Martin, R. M. Calculation of the optical response of atomic clusters using time-dependent density functional theory and local orbitals. Phys. Rev. B 2002, 66, 235416.

29

Kodama, Y.; Ohno, K. Charge separation dynamics at molecular heterojunction of C60 and zinc phthalocyanine. Appl. Phys. Lett. 2010, 96, 034101.

30

Edwards, L.; Gouterman, M. Porphyrins: XV. Vapor absorption spectra and stability: Phthalocyanines. J. Mol. Spectrosc. 1970, 33, 292–310.

31

Leach, S.; Vervloet, M.; Desprès, A.; Bréheret, E.; Hare, J. P.; Dennis, T. J.; Kroto, H. W.; Taylor, R.; Walton, D. R. M. Electronic spectra and transitions of the fullerene C60. Chem. Phys. 1992, 160, 451–466.

32

Dougherty, D. B.; Jin, W.; Cullen, W. G.; Reutt-Robey, J. E.; Robey, S. W. Striped domains at the pentacene: C60 interface. Appl. Phys. Lett. 2009, 94, 023103.

Publication history
Copyright
Acknowledgements

Publication history

Received: 09 November 2011
Revised: 31 January 2012
Accepted: 01 February 2012
Published: 07 March 2012
Issue date: April 2012

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012

Acknowledgements

Acknowledgements

We thank Prof. M. Grätzel for helpful discussion. We acknowledge partial financial support from EPFL for J.R., and the National Science Foundation of China (No. 11074287), Ministry of Science and Technology (No. 2012CB921403), and the Hundred Talents program of Chinese Academy of Sciences for S.M.

Return