Journal Home > Volume 5 , Issue 4

We examine the effect of van der Waals (vdW) interactions between atomic force microscope tips and individual carbon nanotubes (CNTs) supported on SiO2. Molecular dynamics (MD) simulations reveal how CNTs deform during atomic force microscopy (AFM) measurement, irrespective of the AFM tip material. The apparent height of a single-(double-) walled CNT can be used to estimate its diameter up to ~2 nm (~3 nm), but for larger diameters the CNT cross-section is no longer circular. Our simulations were compared against CNT dimensions obtained from AFM measurements and resonant Raman spectroscopy, with good agreement for the smaller CNT diameters. In general, AFM measurements of large-diameter CNTs must be interpreted with care, but the reliability of the approach is improved if knowledge of the number of CNT walls is available, or if additional verification (e.g., by optical techniques) can be obtained.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Effects of Tip–Nanotube Interactions on Atomic Force Microscopy Imaging of Carbon Nanotubes

Show Author's information Rouholla Alizadegan1Albert D. Liao2,3,4Feng Xiong2,3,4Eric Pop2,3,4( )K. Jimmy Hsia1,2,5( )
Department of Mechanical Science & EngineeringUniversity of Illinois at Urbana-ChampaignIllinois61801USA
Micro and Nanotechnology LaboratoryUniversity of Illinois at Urbana-ChampaignIllinois61801USA
Department of Electrical and Computer EngineeringUniversity of Illinois at Urbana-ChampaignIllinois61801USA
Beckman InstituteUniversity of Illinois at Urbana-ChampaignIllinois61801USA
Department of BioengineeringUniversity of Illinois at Urbana-ChampaignIllinois61801USA

Abstract

We examine the effect of van der Waals (vdW) interactions between atomic force microscope tips and individual carbon nanotubes (CNTs) supported on SiO2. Molecular dynamics (MD) simulations reveal how CNTs deform during atomic force microscopy (AFM) measurement, irrespective of the AFM tip material. The apparent height of a single-(double-) walled CNT can be used to estimate its diameter up to ~2 nm (~3 nm), but for larger diameters the CNT cross-section is no longer circular. Our simulations were compared against CNT dimensions obtained from AFM measurements and resonant Raman spectroscopy, with good agreement for the smaller CNT diameters. In general, AFM measurements of large-diameter CNTs must be interpreted with care, but the reliability of the approach is improved if knowledge of the number of CNT walls is available, or if additional verification (e.g., by optical techniques) can be obtained.

Keywords: diameter, atomic force microscopy (AFM), Carbon nanotube (CNT), tip–nanotube interaction

References(56)

1

Shimizu, T.; Abe, H.; Ando, A.; Nakayama, Y.; Tokumoto, H. Electrical conductivity measurements of a multi-walled carbon nanotube. Surf. Interface Anal. 2005, 37, 204–207.

2

Martel, R.; Schmidt, T.; Shea, H. R.; Hertel, T.; Avouris, P. Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 1998, 73, 2447–2449.

3

Avouris, P.; Hertel, T.; Martel, R.; Schmidt, T.; Shea, H. R.; Walkup, R. E. Carbon nanotubes: Nanomechanics, manipulation, and electronic devices. Appl. Surf. Sci. 1999, 141, 201–209.

4

Panzer, M. A.; Zhang, G.; Mann, D.; Hu, X.; Pop, E.; Dai, H.; Goodson, K. E. Thermal properties of metal-coated vertically aligned single-wall nanotube arrays. J. Heat Transfer 2008, 130, 052401.

5

Ryu, K.; Badmaev, A.; Wang, C.; Lin, A.; Patil, N.; Gomez, L.; Kumar, A.; Mitra, S.; Wong, H. S. P.; Zhou, C. W. CMOS-analogous wafer-scale nanotube-on-insulator approach for submicrometer devices and integrated circuits using aligned nanotubes. Nano Lett. 2009, 9, 189–197.

6

Durrer, L.; Helbling, T.; Zenger, C.; Jungen, A.; Stampfer, C.; Hierold, C. Sens. Actuators B 2008, 132, 485–490.

DOI
7

Xiong, F.; Liao, A. D.; Estrada, D.; Pop, E. Low-power switching of phase-change materials with carbon nanotube electrodes. Science 2011, 332, 568–570.

8

Kataura, H.; Kumazawa, Y.; Maniwa, Y.; Umezu, I.; Suzuki, S.; Ohtsuka, Y.; Achiba, Y. Optical properties of single-wall carbon nanotubes. Synthetic Metals 1999, 103, 2555–2558.

9

Zhao, Y.; Liao, A.; Pop, E. Multiband mobility in semi-conducting carbon nanotubes. IEEE Electron Device Letters 2009, 30, 1078–1080.

10

Kim, W.; Javey, A.; Tu, R.; Cao, J.; Wang, Q.; Dai, H. J. Electrical contacts to carbon nanotubes down to 1 nm in diameter. Applied Physics Letters 2005, 87, 173101.

11

Lu, J. P. Elastic properties of carbon nanotubes and nanoropes. Phys. Rev. Lett. 1997, 79, 1297–1300.

12

Hertel, T.; Martel, R.; Avouris, P. Manipulation of individual carbon nanotubes and their interaction with surfaces. J. Phys. Chem. B 1998, 102, 910–915.

13

Falvo, M. R.; Steele, J.; Taylor, R. M., Ⅱ; Superfine, R. Gearlike rolling motion mediated by commensurate contact: Carbon nanotubes on HOPG. Phys. Rev. B 2000, 62, R10665–R10667.

14

Miura, K.; Takagi, T.; Kamiya, S.; Sahashi, T.; Yamauchi, M. Natural rolling of Zigzag multiwalled carbon nanotubes on graphite. Nano Lett. 2001, 1, 161–163.

15

Alizadegan, R.; Hsia, K. J.; Martinez, T. J. A divide and conquer real space finite-element Hartree–Fock method. J. Chem. Phys. 2010, 132, 034101.

16

Buldum, A.; Lu, J. P. Modeling and simulations of carbon nanotubes and their junctions on surfaces. Appl. Surface Sci. 2003, 219 123–128.

17

Wu, J.; Zang, J.; Larade, B.; Guo, H.; Gong, X. G.; Liu, F. Computational design of carbon nanotube electromechanical pressure sensors. Phys. Rev. B 2004, 69, 153406.

18

Hertel, T.; Walkup, R. E.; Avouris, P. Deformation of carbon nanotubes by surface van der Waals forces. Phys. Rev. B 1998, 58, 13870–13873.

19

Pantano, A.; Parks, D. M.; Boyce, M. C. Mechanics of deformation of single- and multi-wall carbon nanotubes. J. Mech. Phys. Solids 2004, 52, 789–821.

20

Liao, A.; Alizadegan, R.; Ong, Z. Y.; Dutta, S.; Xiong, F.; Hsia, K. J.; Pop, E. Thermal dissipation and variability in electrical breakdown of carbon nanotube devices. Phys. Rev. B 2010, 82, 205406.

21

Hutter, J. L.; Bechhoefer, J. Measurement and manipulation of van der Waals forces in atomic-force microscopy. J. Vac. Sci. Technol. B 1994, 12, 2251–2253.

22

Jaiswal, R. P.; Kumar, G.; Kilroy, C. M.; Beaudoin, S. P. Modeling and validation of the van der Waals force during the adhesion of aanoscale objects to rough surfaces: A detailed description. Langmuir 2009, 25, 10612–10623.

23

Hutter, J. L.; Bechhoefer, J. Manipulation of van der Waals forces to improve image resolution in atomic-force microscopy. J. Appl. Phys. 1993, 73, 4123–4129.

24

Horie, C.; Miyazaki, H. Atomic-force-microscopy images of graphite due to van der Waals interactions. Phys. Rev. B 1990, 42, 11757–11761.

25

Brenner, D. W. Empirical potential for hydrocarbons for use in simulating the chemical vapor deposition of diamond films. Phys. Rev. B 1990, 42, 9458–9471.

26

Terdalkar, S. S.; Zhang, S.; Rencis, J. J.; Hsia, K. J. Molecular dynamics simulations of ion-irradiation induced deflection of 2D graphene films. Intl. J. Solids Struct. 2008, 45, 3908–3917.

27

Huang, X.; Yuan, H.; Hsia, K. J.; Zhang, S. Coordinated buckling of thick multi-walled carbon nanotubes under uniaxial compression. Nano Res. 2010, 3, 32–42.

28

Zhang, S.; Khare, R.; Belytschko, T.; Hsia, K. J.; Mielke, S. L.; Schatz, G. C. Transition states and minimum energy pathways for the collapse of carbon nanotubes. Phys. Rev. B 2006, 73, 075423.

29

Zhang, S.; Liu, W. K.; Ruoff, R. S. Atomistic simulations of double-walled carbon nanotubes (DWCNTs) as rotational bearings. Nano Lett. 2004, 4, 293–297.

30

Rappe, A. K.; Casewit, C. J.; Colwell, K. S.; Goddard, W. A., Ⅲ; Skiff, W. M. Uff, a full periodic-table force-field for molecular mechanics and molecular-dynamics simulations. J. Am. Chem. Soc. 1992, 114, 10024–10035.

31

Girifalco, L. A.; Hodak, M.; Lee, R. S. Carbon nanotubes, buckyballs, ropes, and a universal graphitic potential. Phys. Rev. B 2000, 62, 13104–13110.

32

Odin, C.; Aime, J. P.; Kaakour, Z. E.; Bouhacina, T. Tip's finite size effects on atomic force microscopy in the contact mode: simple geometrical considerations for rapid estimation of apex radius and tip angle based on the study of polystyrene latex balls. Surf. Sci. 1994, 317, 321–340.

33

DeBorde, T.; Joiner, J. C.; Leyden, M. R.; Minot, E. D. Identifying individual single-walled and double-walled carbon nanotubes by atomic force microscopy. Nano Lett. 2008, 8, 3568–3571.

34

Xiao, J. L.; Dunham, S.; Liu, P.; Zhang, Y. W.; Kocabas, C.; Moh, L.; Huang, Y. G.; Hwang, K. C.; Lu, C.; Huang, W., et al. Alignment controlled growth of single-walled carbon nanotubes on quartz substrates. Nano Lett. 2009, 9, 4311–4319.

35

Li, Y. M.; Kim, W.; Zhang, Y. G.; Rolandi, M.; Wang, D. W.; Dai, H. J. Growth of single-walled carbon nanotubes from discrete catalytic nanoparticles of various sizes. J. Phys. Chem. B 2001, 105, 11424–11431.

36

Lebedkin, S.; Schweiss, P.; Renker, B.; Malik, S.; Hennrich, F.; Neumaier, M.; Stoermer, C.; Kappes, M. M. Single-wall carbon nanotubes with diameters approaching 6 nm obtained by laser vaporization. Carbon 2002, 40, 417–423.

37

Minary-Jolandan, M.; Yu, M. -F. Reversible radial deformation up to the complete flattening of carbon nanotubes in nanoindentation. J. Appl. Phys. 2008, 103, 073516.

38

Rao, A. M.; Richter, E.; Bandow, S.; Chase, B.; Eklund, P. C.; Williams, K. A.; Fang, S.; Subbaswamy, K. R.; Menon, M.; Thess, A., et al. Diameter-selective Raman scattering from vibrational modes in carbon nanotubes. Science 1997, 275, 187–191.

39

Jorio, A.; Saito, R.; Hafner, J. H.; Lieber, C. M.; Hunter, M.; McClure, T.; Dresselhaus, G.; Dresselhaus, M. S. Structural (n, m) determination of isolated single-wall carbon nanotubes by resonant Raman scattering. Phys. Rev. Lett. 2001, 86, 1118–1121.

40

Jorio, A.; Souza Filho, A. G.; Dresselhaus, G.; Dresselhaus, M. S.; Swan, A. K.; Unlu, M. S.; Goldberg, B. B.; Pimenta, M. A.; Hafner, J. H.; Lieber, C. M., et al. G-band resonant Raman study of 62 isolated single-wall carbon nanotubes. Phys. Rev. B 2002, 65, 155412.

41

Jorio, A.; Dresselhaus, M. S.; Saito, R.; Dresselhaus, G. Raman Spectroscopy in Graphene Related Systems; WILEY-VCH, Weinheim, Germany, 2011.

DOI
42

Liao, A.; Zhao, Y.; Pop, E. Avalanche-induced current enhancement in semiconducting carbon nanotubes. Phys. Rev. Lett. 2008, 101, 256804.

43

Lu, W.; Xiong, Y.; Hassanien, A.; Zhao, W.; Zheng, M.; Chen, L. W. A scanning probe microscopy based assay for single-walled carbon nanotube metallicity. Nano Lett. 2009, 9, 1668–1672.

44

Cronin, S. B.; Swan, A. K.; Unlu, M. S.; Goldberg, B. B.; Dresselhaus, M. S.; Tinkham, M. Measuring the uniaxial strain of individual single-wall carbon nanotubes: Resonance Raman spectra of atomic-force-microscope modified single-wall nanotubes. Phys. Rev. Lett. 2004, 93, 167401.

45

Ishigami, M.; Chen, J. H.; Cullen, W. G.; Fuhrer, M. S.; Williams, E. D. Atomic structure of graphene on SiO2. Nano Lett. 2007, 7, 1643–1648.

46

Rossi, M. P.; Gogotsi, Y.; Kornev, K. G. Deformation of carbon nanotubes by exposure to water vapor. Langmuir 2009, 25, 2804–2810.

47

Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56–58.

48

Begtrup, G. E.; Ray, K. G.; Kessler, B. M.; Yuzvinsky, T. D.; Garcia, H.; Zettl, A. Probing nanoscale solids at thermal extremes. Phys. Rev. Lett. 2007, 99, 155901.

49

Wildoer, J. W. G.; Venema, L. C.; Rinzler, A. G.; Smalley, R. E.; Dekker, C. Electronic structure of atomically resolved carbon nanotubes. Nature 1998, 391, 59–62.

50

Tapaszto, L.; Mark, G. I.; Koos, A. A.; Lambin, P.; Biro, L. P. Apparent diameter of carbon nanotubes in scanning tunnelling microscopy measurements. J. Phys. : -Condens. Matter 2006, 18, 5793–5805.

51

Bachilo, S. M.; Strano, M. S.; Kittrell, C.; Hauge, R. H.; Smalley, R. E.; Weisman, R. B. Structure-assigned optical spectra of single-walled carbon nanotubes. Science 2002, 298, 2361–2366.

52

Weisman, R. B.; Bachilo, S. M. Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: an empirical Kataura plot. Nano Lett. 2003, 3, 1235–1238.

53

Sfeir, M. Y.; Wang, F.; Huang, L. M.; Chuang, C. C.; Hone, J.; O'Brien, S. P.; Heinz, T. F.; Brus, L. E. Probing electronic transitions in individual carbon nanotubes by Rayleigh scattering. Science 2004, 306, 1540–1543.

54

Joh, D. Y.; Herman, L. H.; Ju, S. -Y.; Kinder, J.; Segal, M. A.; Johnson, J. N.; Chan, G. K. L.; Park, J. On-chip Rayleigh imaging and spectroscopy of carbon nanotubes. Nano Lett. 2010, 11, 1–7.

55

Dresselhaus, M. S.; Dresselhaus, G.; Saito, R.; Jorio, A. Raman spectroscopy of carbon nanotubes. Phys. Rep. 2005, 409, 47–99.

56

Farhat, H.; Son, H.; Samsonidze, G. G.; Reich, S.; Dresselhaus, M. S.; Kong, J. Phonon softening in individual metallic carbon nanotubes due to the Kohn anomaly. Phys. Rev. Lett. 2007, 99, 145506.

File
nr-5-4-235_ESM.pdf (376 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 07 October 2011
Revised: 09 January 2012
Accepted: 21 January 2012
Published: 11 March 2012
Issue date: April 2012

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2012

Acknowledgements

Acknowledgements

This work was supported by the National Science Foundation (NSF) grants CMMI 0952565 and CMMI 1029221 (R.A. and K.J.H.) and NSF award CAREER ECCS 0954423 (E.P.), the Nanoelectronics Research Initiative (NRI) Coufal Fellowship (A.L.) and the Marco MSD Center (F.X.). The authors thank T. DeBorde and E.D. Minot for the helpful discussion on the technique to estimate the compressive force on CNTs.

Return