Journal Home > Volume 5 , Issue 1

Nanoparticles (NPs) formulated using self-assembly of block copolymers have attracted significant attention as nano-scaled drug delivery vehicles. Here we report the development of a biodegradable NP using self-assembly of a linear amphiphilic block copolymer, Dex-b-PLA, composed of poly(D, L-lactide), and dextran. The size of the NPs can be precisely tuned between 15 and 70 nm by altering the molecular weight (MW) of the two polymer chains. Using doxorubicin as a model drug, we demonstrated that the NPs can carry up to 21% (w/w) of the drug payload. The release profile of doxorubicin from NPs showed sustained release for over 6 days. Using a rat model, we explored the pharmacokinetics profiles of Dex-b-PLA NPs, and showed proof-of-concept that long circulation lifetime of the NPs can be achieved by tuning the MW of Dex-b-PLA block copolymer. While the terminal half-life of Dex-b-PLA NPs (29.8 h) was similar to that observed in poly(ethylene glycol)-coated (PEG-coated) NPs (27.0 h), 90% of the injected Dex-b-PLA NPs were retained in the blood circulation for 38.3 h after injection, almost eight times longer than the PEG-coated NPs. The area under curve (AUC) of Dex-b-PLA NPs was almost four times higher than PEG-based NPs. The biodistribution study showed lower accumulation of Dex-b-PLA NPs in the spleen with 19.5% initial dose per gram tissue (IDGT) after 24 h compared to PEG-coated poly(lactide-co-glycolide) (PLGA) NPs (29.8% IDGT). These studies show that Dex-b-PLA block copolymer is a promising new biomaterial for making controlled nanoparticles as drug delivery vehicles.


menu
Abstract
Full text
Outline
About this article

Size-Tunable Nanoparticles Composed of Dextran-b-poly(D, L-lactide) for Drug Delivery Applications

Show Author's information Mohit S. Verma1,§Shengyan Liu1,§Yih Y. Chen1Ameena Meerasa1Frank X. Gu1,2( )
Department of Chemical EngineeringUniversity of WaterlooWaterlooN2L 3G1Canada
Waterloo Institute for NanotechnologyUniversity of WaterlooWaterlooN2L 3G1Canada

§ These authors contributed equally to this work

Abstract

Nanoparticles (NPs) formulated using self-assembly of block copolymers have attracted significant attention as nano-scaled drug delivery vehicles. Here we report the development of a biodegradable NP using self-assembly of a linear amphiphilic block copolymer, Dex-b-PLA, composed of poly(D, L-lactide), and dextran. The size of the NPs can be precisely tuned between 15 and 70 nm by altering the molecular weight (MW) of the two polymer chains. Using doxorubicin as a model drug, we demonstrated that the NPs can carry up to 21% (w/w) of the drug payload. The release profile of doxorubicin from NPs showed sustained release for over 6 days. Using a rat model, we explored the pharmacokinetics profiles of Dex-b-PLA NPs, and showed proof-of-concept that long circulation lifetime of the NPs can be achieved by tuning the MW of Dex-b-PLA block copolymer. While the terminal half-life of Dex-b-PLA NPs (29.8 h) was similar to that observed in poly(ethylene glycol)-coated (PEG-coated) NPs (27.0 h), 90% of the injected Dex-b-PLA NPs were retained in the blood circulation for 38.3 h after injection, almost eight times longer than the PEG-coated NPs. The area under curve (AUC) of Dex-b-PLA NPs was almost four times higher than PEG-based NPs. The biodistribution study showed lower accumulation of Dex-b-PLA NPs in the spleen with 19.5% initial dose per gram tissue (IDGT) after 24 h compared to PEG-coated poly(lactide-co-glycolide) (PLGA) NPs (29.8% IDGT). These studies show that Dex-b-PLA block copolymer is a promising new biomaterial for making controlled nanoparticles as drug delivery vehicles.

Keywords: nanoparticles, biodistribution, controlled drug delivery, Dextran, pharmacokinetics, in vivo

References(52)

1

Jain, R. K.; Stylianopoulos, T. Delivering nanomedicine to solid tumors. Nat. Rev. Clin. Oncol. 2010, 7, 653–664.

2

Gu, F. X.; Karnik, R.; Wang, A. Z.; Alexis, F.; Levy-Nissenbaum, E.; Hong, S.; Langer, R. S.; Farokhzad, O. C. Targeted nanoparticles for cancer therapy. Nano Today 2007, 2, 14–21.

3

Pridgen, E. M.; Langer, R.; Farokhzad, O. C. Biodegradable, polymeric nanoparticle delivery systems for cancer therapy. Nanomedicine 2007, 2, 669–680.

4

Kim, D. K.; Dobson, J. Nanomedicine for targeted drug delivery. J. Mater. Chem. 2009, 19, 6294–6307.

5

Gref, R.; Minamitake, Y.; Peracchia, M. T.; Trubetskoy, V.; Torchilin, V.; Langer, R. Biodegradable long-circulating polymeric nanospheres. Science 1994, 263, 1600–1603.

6

Gaucher, G.; Marchessault, R. H.; Leroux, J. Polyester-based micelles and nanoparticles for the parenteral delivery of taxanes. J. Control. Release 2010, 143, 2–12.

7

Dong, Y.; Feng, S. In vitro and in vivo evaluation of methoxy polyethylene glycol–polylactide (MPEG–PLA) nanoparticles for small-molecule drug chemotherapy. Biomaterials 2007, 28, 4154–4160.

8

Gursahani, H.; Riggs-Sauthier, J.; Pfeiffer, J.; Lechuga-Ballesteros, D.; Fishburn, C. S. Absorption of polyethylene glycol (PEG) polymers: The effect of PEG size on permeability. J. Pharm. Sci. 2009, 98, 2847–2856.

9

Yang, J.; Cho, E.; Seo, S.; Lee, J.; Yoon, H.; Suh, J.; Huh, Y.; Haam, S. Enhancement of cellular binding efficiency and cytotoxicity using polyethylene glycol base triblock copolymeric nanoparticles for targeted drug delivery. J. Biomed. Mater. Res. A 2008, 84A, 273–280.

10

Wei, X.; Gong, C.; Gou, M.; Fu, S.; Guo, Q.; Shi, S.; Luo, F.; Guo, G.; Qiu, L.; Qian, Z. Biodegradable poly(ε-caprolactone)–poly(ethylene glycol) copolymers as drug delivery system. Int. J. Pharm. 2009, 381, 1–18.

11

Bazile, D.; Prudhomme, C.; Bassoullet, M. T.; Marlard, M.; Spenlehauer, G.; Veillard, M. Stealth Me. PEG–PLA nano-particles avoid uptake by the mononuclear phagocytes system. J. Pharm. Sci. 1995, 84, 493–498.

12

Lemarchand, C.; Gref, R.; Couvreur, P. Polysaccharide-decorated nanoparticles. Eur. J. Pharm. Biopharm. 2004, 58, 327–341.

13

Kailasan, A.; Yuan, Q.; Yang, H. Synthesis and characterization of thermoresponsive polyamidoamine–polyethylene glycol–poly(D, L-lactide) core–shell nanoparticles. Acta Biomater. 2010, 6, 1131–1139.

14

Owens, D. E.; Peppas, N. A. Opsonization, biodistribution, and pharmacokinetics of polymeric nanoparticles. Int. J. Pharm. 2006, 307, 93–102.

15

Cho, K.; Wang, X.; Nie, S.; Chen, Z.; Shin, D. M. Therapeutic nanoparticles for drug delivery in cancer. Clin. Cancer Res. 2008, 14, 1310–1316.

16

Jiang, W.; Kim, B. Y. S.; Rutka, J. T.; Chan, W. C. W. Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol. 2008, 3, 145–150.

17

Karnik, R.; Gu, F.; Basto, P.; Cannizzaro, C.; Dean, L.; Kyei-Manu, W.; Langer, R.; Farokhzad, O. C. Microfluidic platform for controlled synthesis of polymeric nanoparticles. Nano Lett. 2008, 8, 2906–2912.

18

Goodwin, A. P.; Tabakman, S. M.; Welsher, K.; Sherlock, S. P.; Prencipe, G.; Dai, H. Phospholipid–dextran with a single coupling point: A useful amphiphile for functionalization of nanomaterials. J. Am. Chem. Soc. 2009, 131, 289–296.

19

Nouvel, C.; Frochot, C.; Sadtler, V.; Dubois, P.; Dellacherie, E.; Six, J. Polylactide-grafted dextrans: Synthesis and properties at interfaces and in solution. Macromolecules 2004, 37, 4981–4988.

20

Chittasupho, C.; Xie, S.; Baoum, A.; Yakovleva, T.; Siahaan, T. J.; Berkland, C. J. ICAM-1 targeting of doxorubicin-loaded PLGA nanoparticles to lung epithelial cells. Eur. J. Pharm. Sci. 2009, 37, 141–150.

21

Gu, F.; Zhang, L.; Teply, B. A.; Mann, N.; Wang, A.; Radovic-Moreno, A. F.; Langer, R.; Farokhzad, O. C. Precise engineering of targeted nanoparticles by using self-assembled biointegrated block copolymers. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 2586–2591.

22

Riley, T.; Govender, T.; Stolnik, S.; Xiong, C. D.; Garnett, M. C.; Illum, L.; Davis, S. S. Colloidal stability and drug incorporation aspects of micellar-like PLA–PEG nanoparticles. Colloids Surf. B-Biointerfaces. 1999, 19, 147–159.

23

Riley, T.; Stolnik, S.; Heald, C. R.; Xiong, C. D.; Garnett, M. C.; Illum, L.; Davis, S. S.; Purkiss, S. C.; Barlow, R. J.; Gellert, P. R. Physicochemical evaluation of nanoparticles assembled from poly(lactic acid)–poly(ethylene glycol) (PLA–PEG) block copolymers as drug delivery vehicles. Langmuir 2001, 17, 3168–3174.

24

Zahr, A. S.; Davis, C. A.; Pishko, M. V. Macrophage uptake of core–shell nanoparticles surface modified with poly(ethylene glycol). Langmuir 2006, 22, 8178–8185.

25

Dhar, S.; Gu, F. X.; Langer, R.; Farokhzad, O. C.; Lippard, S. J. Targeted delivery of cisplatin to prostate cancer cells by aptamer functionalized Pt(Ⅳ) prodrug–PLGA–PEG nanoparticles. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 17356–17361.

26

Shuai, X. T.; Ai, H.; Nasongkla, N.; Kim, S.; Gao, J. M. Micellar carriers based on block copolymers of poly(ε-caprolactone) and poly(ethylene glycol) for doxorubicin delivery. J. Control. Release 2004, 98, 415–426.

27

He, Y. Y.; Zhang, Y.; Gu, C. H.; Dai, W. F.; Lang, M. D. Micellar carrier based on methoxy poly(ethylene glycol)–block–poly(epsilon-caprolactone) block copolymers bearing ketone groups on the polyester block for doxorubicin delivery. J. Mater. Sci. -Mater. Med. 2010, 21, 567–574.

28

Missirlis, D.; Kawamura, R.; Tirelli, N.; Hubbell, J. A. Doxorubicin encapsulation and diffusional release from stable, polymeric, hydrogel nanoparticles. Eur. J. Pharm. Sci. 2006, 29, 120–129.

29

Kataoka, K.; Harada, A.; Nagasaki, Y. Block copolymer micelles for drug delivery: Design, characterization and biological significance. Adv. Drug Deliv. Rev. 2001, 47, 113–131.

30

Alpert, A. J. Hydrophilic-interaction chromatography for the separation of peptides, nucleic acids and other polar compounds. J. Chromatogr. A 1990, 499, 177–196.

31

Drummond, D. C.; Meyer, O.; Hong, K.; Kirpotin, D. B.; Papahadjopoulos, D. Optimizing liposomes for delivery of chemotherapeutic agents to solid tumors. Pharmacol. Rev. 1999, 51, 691–744.

32

Safra, T.; Muggia, F.; Jeffers, S.; Tsao-Wei, D. D.; Groshen, S.; Lyass, O.; Henderson, R.; Berry, G.; Gabizon, A. Pegylated liposomal doxorubicin (doxil): Reduced clinical cardiotoxicity in patients reaching or exceeding cumulative doses of 500 mg/m2. Ann. Oncol. 2000, 11, 1029–1033.

33

Magenheim, B.; Levy, M. Y.; Benita, S. A new in vitro technique for the evaluation of drugrelease profile from colloidal carriers–ultrafiltration technique at lowpressure. Int. J. Pharm. 1993, 94, 115–123.

34

Esmaeili, F.; Ghahremani, M. H.; Ostad, S. N.; Atyabi, F.; Seyedabadi, M.; Malekshahi, M. R.; Amini, M.; Dinarvand, R. Folate-receptor-targeted delivery of docetaxel nanoparticles prepared by PLGA–PEG–folate conjugate. J. Drug Target. 2008, 16, 415–423.

35

Dobrovoiskaia, M. A.; Clogston, J. D.; Neun, B. W.; Hall, J. B.; Patri, A. K.; McNeil, S. E. Method for analysis of nanoparticle hemolytic properties in vitro. Nano Lett. 2008, 8, 2180–2187.

36

Kim, D.; El-Shall, H.; Dennis, D.; Morey, T. Interaction of PLGA nanoparticles with human blood constituents. Colloid Surf. B-Biointerfaces 2005, 40, 83–91.

37

Fischer, D.; Li, Y. X.; Ahlemeyer, B.; Krieglstein, J.; Kissel, T. In vitro cytotoxicity testing of polycations: Influence of polymer structure on cell viability and hemolysis. Biomaterials 2003, 24, 1121–1131.

38

Sacco, J. J.; Botten, J.; Macbeth, F.; Bagust, A.; Clark, P. The average body surface area of adult cancer patients in the UK: A multicentre retrospective study. PLoS One 2010, 5, e8933–e8933.

39

Kusnierz-Glaz, C. R.; Still, B. J.; Amano, M.; Zukor, J. D.; Negrin, R. S.; Blume, K. G.; Strober, S. Granulocyte colony-stimulating factor-induced comobilization of CD4CD8T cells and hematopoietic progenitor cells (CD34+) in the blood of normal donors. Blood 1997, 89, 2586–2595.

40

Yang, Z.; Leon, J.; Martin, M.; Harder, J. W.; Zhang, R.; Liang, D.; Lu, W.; Tian, M.; Gelovani, J. G.; Qiao, A. et al. Pharmacokinetics and biodistribution of near-infrared fluorescence polymeric nanoparticles. Nanotechnology 2009, 20, 165101.

41

Gaucher, G.; Asahina, K.; Wang, J.; Leroux, J. Effect of poly(N-vinyl-pyrrolidone)-block-poly(D, L-lactide) as coating agent on the opsonization, phagocytosis, and pharmacokinetics of biodegradable nanoparticles. Biomacromolecules 2009, 10, 408–416.

42

Gaur, U.; Sahoo, S. K.; De, T. K.; Ghosh, P. C.; Maitra, A.; Ghosh, P. K. Biodistribution of fluoresceinated dextran using novel nanoparticles evading reticuloendothelial system. Int. J. Pharm. 2000, 202, 1–10.

43

He, C.; Hu, Y.; Yin, L.; Tang, C.; Yin, C. Effects of particle size and surface charge on cellular uptake and biodistribution of polymeric nanoparticles. Biomaterials 2010, 31, 3657–3666.

44

Lee, H.; Fonge, H.; Hoang, B.; Reilly, R. M.; Allen, C. The effects of particle size and molecular targeting on the intratumoral and subcellular distribution of polymeric nano-particles. Mol. Pharm. 2010, 7, 1195–1208.

45

Allen, T. M.; Hansen, C. Pharmacokinetics of stealth versus conventional liposomes: effect of dose. Biochim. Biophys. Acta-Biomembr. 1991, 1068, 133–141.

46

Rehor, A.; Schmoekel, H.; Tirelli, N.; Hubbell, J. A. Functionalization of polysulfide nanoparticles and their performance as circulating carriers. Biomaterials 2008, 29, 1958–1966.

47

Portet, D.; Denizot, B.; Rump, E.; Hindre, F.; Le Jeune, J.; Jallet, P. Comparative biodistribution of thin-coated iron oxide nanoparticles TCION: Effect of different bisphosphonate coatings. Drug Dev. Res. 2001, 54, 173–181.

48

Li, S.; Huang, L. Pharmacokinetics and biodistribution of nanoparticles. Mol. Pharm. 2008, 5, 496–504.

49

Peracchia, M. T.; Fattal, E.; Desmaele, D.; Besnard, M.; Noel, J. P.; Gomis, J. M.; Appel, M.; d'Angelo, J.; Couvreur, P. Stealth® PEGylated polycyanoacrylate nanoparticles for intravenous administration and splenic targeting. J. Control. Release 1999, 60, 121–128.

50

Chouly, C.; Pouliquen, D.; Lucet, I.; Jeune, J. J.; Jallet, P. Development of superparamagnetic nanoparticles for MRI: Effect of particle size, charge and surface nature on biodistribution. J. Microencapsul. 1996, 13, 245–255.

51

Passirani, C.; Barratt, G.; Devissaguet, J.; Labarre, D. Long-circulating nanoparticles bearing heparin or dextran covalently bound to poly(methyl methacrylate). Pharm. Res. 1998, 15, 1046–1050.

52

Meerasa, A.; Huang, J. G.; Gu, F. X. CH(50): A revisited hemolytic complement consumption assay for evaluation of nanoparticles and blood plasma protein interaction. Curr. Drug Deliv. 2011, 8, 290–298.

Publication history
Copyright
Acknowledgements

Publication history

Received: 05 September 2011
Revised: 19 October 2011
Accepted: 28 October 2011
Published: 25 November 2011
Issue date: January 2012

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011

Acknowledgements

Acknowledgements

This work was financially supported by Natural Sciences and Engineering Research Council of Canada.

Return