Journal Home > Volume 4 , Issue 12

We report an electrochemically assisted mechanically controllable break junction (EC-MCBJ) approach to investigating single molecule conductance. Electrode pairs connected with a gold nanobridge were fabricated by electrochemical deposition and then mounted on a homebuilt MCBJ platform. A large number of Au– molecule–Au junctions were produced sequentially by repeated breaking and reconnecting of the gold nanobridge. In order to measure their single molecule conductance, statistical conductance histograms were generated for benzene-1, 4-dithiol (BDT) and 4, 4'-bipyridine (BPY). The values extracted from these histograms were found to be in the same range as values previously reported in the literature. Our method is distinct from the ones used to acquire these previously reported literature values, however, in that it is faster, simpler, more cost-effective, and changing the electrode material is more convenient.


menu
Abstract
Full text
Outline
About this article

An Electrochemically Assisted Mechanically Controllable Break Junction Approach for Single Molecule Junction Conductance Measurements

Show Author's information Yang Yang1Zhaobin Chen1Junyang Liu1Miao Lu2Dezhi Yang1Fangzu Yang1Zhongqun Tian1( )
State Key Laboratory of Physical Chemistry of Solid Surfaces and Department of ChemistryCollege of Chemistry and Chemical EngineeringXiamen UniversityXiamen361005China
Micro-Electro-Mechanical Systems Research CenterPen-Tung Sah Micro-Nano Technology InstituteXiamen UniversityXiamen361005China

Abstract

We report an electrochemically assisted mechanically controllable break junction (EC-MCBJ) approach to investigating single molecule conductance. Electrode pairs connected with a gold nanobridge were fabricated by electrochemical deposition and then mounted on a homebuilt MCBJ platform. A large number of Au– molecule–Au junctions were produced sequentially by repeated breaking and reconnecting of the gold nanobridge. In order to measure their single molecule conductance, statistical conductance histograms were generated for benzene-1, 4-dithiol (BDT) and 4, 4'-bipyridine (BPY). The values extracted from these histograms were found to be in the same range as values previously reported in the literature. Our method is distinct from the ones used to acquire these previously reported literature values, however, in that it is faster, simpler, more cost-effective, and changing the electrode material is more convenient.

Keywords: electrochemical deposition, Single molecule junction conductance, mechanically controlled break junction (MCBJ), benzene-1, 4-dithiol, bipyridine

References(46)

1

Aviram, A.; Ratner, M. A. Molecular rectifiers. Chem. Phys. Lett. 1974, 29, 277–283.

2

McCreery, R. L.; Bergren, A. J. Progress with molecular electronic junctions: Meeting experimental challenges in design and fabrication. Adv. Mater. 2009, 21, 4303–4322.

3

Ulgut, B.; Abruna, H. D. Electron transfer through molecules and assemblies at electrode surfaces. Chem. Rev. 2008, 108, 2721–2736.

4

Nedelcu, M.; Saifullah, M. S. M.; Hasko, D. G.; Jang, A.; Anderson, D.; Huck, W. T. S.; Jones, G. A. C.; Welland, M. E.; Kang, D. J.; Steiner, U. Fabrication of sub-10 nm metallic lines of low line-width roughness by hydrogen reduction of patterned metal-organic materials. Adv. Funct. Mater. 2010, 20, 2317–2323.

5

Kushmerick, J. G.; Holt, D. B.; Yang, J. C.; Naciri, J.; Moore, M. H.; Shashidhar, R. Metal-molecule contacts and charge transport across monomolecular layers: Measurement and theory. Phys. Rev. Lett. 2002, 89, 086802.

6

Haiss, W.; van Zalinge, H.; Higgins, S. J.; Bethell, D.; Hobenreich, H.; Schiffrin, D. J.; Nichols, R. J. Redox state dependence of single molecule conductivity. J. Am. Chem. Soc. 2003, 125, 15294–15295.

7

Park, H.; Lim, A. K. L.; Alivisatos, A. P.; Park, J.; McEuen, P. L. Fabrication of metallic electrodes with nanometer separation by electromigration. Appl. Phys. Lett. 1999, 75, 301–303.

8

Strachan, D. R.; Smith, D. E.; Johnston, D. E.; Park, T. H.; Therien, M. J.; Bonnell, D. A.; Johnson, A. T. Controlled fabrication of nanogaps in ambient environment for molecular electronics. Appl. Phys. Lett. 2005, 86, 043109.

9

Xu, B. Q.; Tao, N. J. Measurement of single-molecule resistance by repeated formation of molecular junctions. Science2003, 301, 1221–1223.

10

Li, C.; Pobelov, I.; Wandlowski, T.; Bagrets, A.; Arnold, A.; Evers, F. Charge transport in single Au|alkanedithiol|Au junctions: Coordination geometries and conformational degrees of freedom. J. Am. Chem. Soc. 2008, 130, 318–326.

11

Fujihira, M.; Suzuki, M.; Fujii, S.; Nishikawa, A. Currents through single molecular junction of Au/hexanedithiolate/Au measured by repeated formation of break junction in STM under UHV: Effects of conformational change in an alkylene chain from gauche to trans and binding sites of thiolates on gold. Phys. Chem. Chem. Phys. 2006, 8, 3876–3884.

12

Jang, S. Y.; Reddy, P.; Majumdar, A.; Segalman, R. A. Interpretation of stochastic events in single molecule conductance measurements. Nano Lett. 2006, 6, 2362–2367.

13

Reed, M. A.; Zhou, C.; Muller, C. J.; Burgin, T. P.; Tour, J. M. Conductance of a molecular junction. Science1997, 278, 252–254.

14

Martin, C. A.; Ding, D.; Sorensen, J. K.; Bjornholm, T.; van Ruitenbeek, J. M.; van der Zant, H. S. J. Fullerene-based anchoring groups for molecular electronics. J. Am. Chem. Soc. 2008, 130, 13198–13199.

15

Gonzalez, M. T.; Wu, S. M.; Huber, R.; van der Molen, S. J.; Schonenberger, C.; Calame, M. Electrical conductance of molecular junctions by a robust statistical analysis. Nano Lett. 2006, 6, 2238–2242.

16

Muller, C. J.; van Ruitenbeek, J. M.; de Jongh, L. J. Experimental observation of the transition from weak link to tunnel junction. Physica C1992, 191, 485–504.

17

Agraït, N.; Yeyati, A. L.; van Ruitenbeek, J. M. Quantum properties of atomic-sized conductors. Phys. Rep. 2003, 377, 81–279.

18

Li, J. Z.; Yamada, Y.; Murakoshi, K.; Nakato, Y. Sustainable metal nano-contacts showing quantized conductance prepared at a gap of thin metal wires in solution. Chem. Commun. 2001, 2170–2171.

19

Li, C. Z.; Tao, N. J. Quantum transport in metallic nano- wires fabricated by electrochemical deposition/dissolution. Appl. Phys. Lett. 1998, 72, 894–896.

20

Xiang, J.; Liu, B.; Wu, S. T.; Ren, B.; Yang, F. Z.; Mao, B. W.; Chow, Y. L.; Tian, Z. Q. A controllable electrochemical fabrication of metallic electrodes with a nanometer/angstrom-sized gap using an electric double layer as feedback. Angew. Chem. Int. Edit. 2005, 44, 1265–1268.

21

Yang, Y.; Liu, J. Y.; Chen, Z. B.; Tian, J. H.; Jin, X.; Liu, B.; Li, X.; Luo, Z. Z.; Lu, M.; Yang, F. Z., et al. Conductance histogram evolution of an EC-MCBJ fabricated Au atomic point contact. Nanotechnology2011, 22, 275313.

22

Tian, J. H.; Yang, Y.; Liu, B.; Schollhorn, B.; Wu, D. Y.; Maisonhaute, E.; Muns, A. S.; Chen. Y.; Amatore. C.; Tao, N. J., et al. The fabrication and characterization of adjustable nanogaps between gold electrodes on chip for electrical measurement of single molecules. Nanotechnology2010, 21, 274012.

23

Scheer, E.; Agraït, N.; Cuevas, J. C.; Yeyati, A. L.; Ludoph, B.; Martin-Rodero, A.; Bollinger, G. R.; van Ruitenbeek, J. M.; Urbina, C. The signature of chemical valence in the electrical conduction through a single-atom contact. Nature1998, 394, 154–157.

24

Tsutsui, M.; Shoji, K.; Taniguchi, M.; Kawai, T. Formation and self-breaking mechanism of stable atom-sized junctions. Nano Lett. 2008, 8, 345–349.

25

Ittah, N.; Yutsis, I.; Selzer, Y. Fabrication of highly stable configurable metal quantum point contacts. Nano Lett. 2008, 8, 3922–3927.

26

Costa-Kramer, J. L.; Garcia, N.; Garcia-Mochales, P.; Serena, P. A. Nanowire formation in macroscopic metallic contacts: Quantum mechanical conductance tapping a table top. Surf. Sci. 1995, 342, L1144–L1149.

27

Lin, L. L.; Wang, C. K.; Luo, Y. Inelastic electron tunneling spectroscopy of gold-benzenedithiol-gold junctions: Accurate determination of molecular conformation. ACS Nano2011, 5, 2257–2263.

28

Yeganeh, S.; Ratner, M. A.; Galperin, M.; Nitzan, A. Transport in state space: Voltage-dependent conductance calculations of benzene-1, 4-dithiol. Nano Lett. 2009, 9, 1770–1774.

29

Song, H.; Kim, Y.; Jang, Y. H.; Jeong, H.; Reed, M. A.; Lee, T. Observation of molecular orbital gating. Nature2009, 462, 1039–1043.

30

Lortscher, E.; Weber. H. B.; Riel, H. Statistical approach to investigating transport through single molecules. Phys. Rev. Lett. 2007, 98, 176807.

31

Ghosh, S.; Halimun, H.; Mahapatro, A. K.; Choi, J.; Lodha, S.; Janes, D. Device structure for electronic transport through individual molecules using nanoelectrodes. Appl. Phys. Lett. 2005, 87, 233509.

32

Xiao, X. Y.; Xu, B. Q.; Tao, N. J. Measurement of single molecule conductance: Benzenedithiol and benzenedime-thanethiol. Nano Lett. 2004, 4, 267–271.

33

Tsutsui, M.; Taniguchi, M.; Kawai, T. Atomistic mechanics and formation mechanism of metal-molecule-metal junctions. Nano Lett. 2009, 9, 2433–2439.

34

Martin, C. A.; Ding, D.; van der Zant, H. S. J.; van Ruitenbeek, J. M. Lithographic mechanical break junctions for single-molecule measurements in vacuum: Possibilities and limitations. New J. Phys. 2008, 10, 065008.

35

Ulrich, J.; Esrail, D.; Pontius, W.; Venkataraman, L.; Millar, D.; Doerrer, L. H. Variability of conductance in molecular junctions. J. Phys. Chem. B2006, 110, 2462–2466.

36

Tian, J. H.; Liu, B.; Li, X.; Yang, Z. L.; Ren, B.; Wu, S. T.; Tao, N.; Tian, Z. Q. Study of molecular junctions with a combined surface-enhanced Raman and mechanically controllable break junction method. J. Am. Chem. Soc. 2006, 128, 14748–14749.

37

Ward, D. R.; Grady, N. K.; Levin, C. S.; Halas, N. J.; Wu, Y.; Nordlander, P.; Natelson, D. Electromigrated nanoscale gaps for surface-enhanced Raman spectroscopy. Nano Lett. 2007, 7, 1396–1400.

38

Ioffe, Z.; Shamai, T.; Ophir, A.; Noy, G.; Yutsis, I.; Kfir, K.; Cheshnovsky, O.; Selzer, Y. Detection of heating in current-carrying molecular junctions by Raman scattering. Nat. Nanotechnol. 2008, 3, 727–732.

39

Venkataraman, L.; Klare, J. E.; Tam, I. W.; Nuckolls, C.; Hybertsen, M. S.; Steigerwald, M. L. Single-molecule circuits with well-defined molecular conductance. Nano Lett. 2006, 6, 458–462.

40

Hou, S.; Zhang, J.; Li, R.; Ning, J.; Han, R.; Shen, Z.; Zhao, X.; Xue, Z.; Wu, Q. First-principles calculation of the conductance of a single 4, 4 bipyridine molecule. Nanotechnology2005, 16, 239–244.

41

Stadler, R.; Jacobsen, K. Fermi level alignment in molecular nanojunctions and its relation to charge transfer. Phys. Rev. B2006, 74, 161405.

42

Li, Z.; Kosov, D. S. Dithiocarbamate anchoring in molecular wire junctions: A first principles study. J. Phys. Chem. B2006, 110, 9893–9898.

43

Wang, C.; Batsanov, A. S.; Bryce, M. R.; Martín, S.; Nichols, R. J.; Higgins, S. J.; García-Suárez, V. C. M.; Lambert, C. J. Oligoyne Single Molecule Wires. J. Am. Chem. Soc. 2009, 131, 15647–15654.

44

Quek, S. Y.; Kamenetska, M.; Steigerwald, M. L.; Choi, H. J.; Louie, S. G.; Hybertsen, M. S.; Neaton, J. B.; Venkataraman, L. Mechanically controlled binary conductance switching of a single-molecule junction. Nat. Nanotechnol. 2009, 4, 230–234.

45

Zhou, X. S.; Chen, Z. B.; Liu, S. H.; Jin, S.; Liu, L.; Zhang, H. M.; Xie, Z. X.; Jiang, Y. B.; Mao, B. W. Single molecule conductance of dipyridines with conjugated ethene and nonconjugated ethane bridging group. J. Phys. Chem. C2008, 112, 3935–3940.

46

Liu, Z.; Ding, S. Y.; Chen, Z. B.; Wang, X.; Tian, J. H.; Anema, J. R.; Zhou, X. S.; Wu, D. Y.; Mao, B. W.; Xu, X., et al. Revealing the molecular structure of single-molecule junctions in different conductance states by fishing-mode tip-enhanced Raman spectroscopy. Nat. Commun. 2011, 2, 305.

Publication history
Copyright
Acknowledgements

Publication history

Received: 29 June 2011
Revised: 18 August 2011
Accepted: 27 August 2011
Published: 30 September 2011
Issue date: December 2011

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 20873114), and the Ministry of Science and Technology of the People's Republic of China (Grant No. 2009CB930703). We are grateful to Dr. Jason R. Anema for polishing this article.

Return