Journal Home > Volume 4 , Issue 11

We demonstrate an aqueous solution method for the synthesis of a Ag–TiO2–reduced graphene oxide (rGO) hybrid nanostructure (NS) in which the Ag and TiO2 particles are well dispersed on the rGO sheet. The Ag–TiO2–rGO NS was then used as a template to synthesize Pt–TiO2–rGO NS. The resulting hybrid NSs were characterized by transmission electron microscopy (TEM), high-resolution TEM (HRTEM), energy-dispersive X-ray (EDX) spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, UV–vis spectroscopy, Raman spectroscopy, inductively coupled plasma mass spectrometry (ICP-MS), and catalytic studies. It was found that TiO2–rGO, Ag–TiO2–rGO and Pt–TiO2–rGO NSs all show catalytic activity for the reduction of p-nitrophenol to p-aminophenol by NaBH4, and that Pt–TiO2–rGO NS exhibits the highest catalytic activity as well as excellent stability and easy recyclability.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Aqueous-Phase Synthesis of Ag–TiO2–Reduced Graphene Oxide and Pt–TiO2–Reduced Graphene Oxide Hybrid Nanostructures and Their Catalytic Properties

Show Author's information Ping WangLei HanChengzhou ZhuYueming ZhaiShaojun Dong( )
State Key Laboratory of Electroanalytical Chemistry Changchun Institute of Applied Chemistry, Chinese Academy of SciencesChangchun 130022 China

Abstract

We demonstrate an aqueous solution method for the synthesis of a Ag–TiO2–reduced graphene oxide (rGO) hybrid nanostructure (NS) in which the Ag and TiO2 particles are well dispersed on the rGO sheet. The Ag–TiO2–rGO NS was then used as a template to synthesize Pt–TiO2–rGO NS. The resulting hybrid NSs were characterized by transmission electron microscopy (TEM), high-resolution TEM (HRTEM), energy-dispersive X-ray (EDX) spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy, UV–vis spectroscopy, Raman spectroscopy, inductively coupled plasma mass spectrometry (ICP-MS), and catalytic studies. It was found that TiO2–rGO, Ag–TiO2–rGO and Pt–TiO2–rGO NSs all show catalytic activity for the reduction of p-nitrophenol to p-aminophenol by NaBH4, and that Pt–TiO2–rGO NS exhibits the highest catalytic activity as well as excellent stability and easy recyclability.

Keywords: silver, platinum, Reduced graphene oxide, TiO2, hybrid nanostructures, catalytic

References(41)

1

Eda, G.; Fanchini, G.; Chhowalla, M. Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material. Nat. Nanotechnol. 2008, 3, 270–274.

2

Garaj, S.; Hubbard, W.; Reina, A.; Kong, J.; Branton, D.; Golovchenko, J. A. Graphene as a subnanometre trans-electrode membrane. Nature 2010, 467, 190–193.

3

Du, X.; Skachko, I.; Duerr, F.; Luican, A.; Andrei, E. Y. Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene. Nature 2010, 462, 192–195.

4

Liu, Z.; Robinson, J. T.; Sun, X. M.; Dai, H. J. PEGylated nanographene oxide for delivery of water-insoluble cancer drugs. J. Am. Chem. Soc. 2008, 130, 10876–10877.

5

Sun, X. M.; Liu, Z.; Welsher, K.; Robinson, J. T.; Goodwin, A.; Zaric, S.; Dai, H. J. Nano-graphene oxide for cellular imaging and drug delivery. Nano Res. 2008, 1, 203–212.

6

Das, A.; Pisana, S.; Chakraborty, B.; Piscanec, S; Saha, S. K.; Waghmare, U. V.; Novoselov, K. S.; Krishnamurthy, H. R.; Geim, A. K.; Ferrari, A. C.; Sood, A. K. Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor. Nat. Nanotechnol. 2008, 3, 210–215.

7

Martin, J.; Akerman, N.; Ulbricht, G.; Lohmann, T.; Smet, J. H.; Von Klitzing, K.; Yacoby, A. Observation of electron–hole puddles in graphene using a scanning single-electron transistor. Nat. Phys. 2008, 4, 144–148.

8

Stampfer, C.; Schurtenberger, E.; Molitor, F.; Gϋttinger, J.; Ihn, T.; Ensslin, K. Tunable graphene single electron transistor. Nano Lett. 2008, 8, 2378–2383.

9

Lee, C. G.; Park, S.; Ruoff, R. S.; Dodabalapur, A. Integration of reduced graphene oxide into organic field-effect transistors as conducting electrodes and as a metal modification layer. Appl. Phys. Lett. 2009, 95, 023304.

10

Wang, X.; Zhi, L. J.; Mullen, K. Transparent, conductive graphene electrodes for dye-sensitized solar cells. Nano Lett. 2008, 8, 323–327.

11

Yang, N.; Zhai, J.; Wang, D.; Chen, Y.; Jiang, L. Two-dimensional graphene bridges enhanced photoinduced charge transport in dye-sensitized solar cell. ACS Nano 2010, 4, 887–894.

12

Schedin, F.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Hill, E. W.; Blake, P.; Novoselov, K. S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655.

13

Lee, J. K.; Smith, K. B.; Hayner, C. M.; Kung, H. H. Silicon nanoparticles–graphene paper composites for Li ion battery anodes. Chem. Commun. 2010, 46, 2025–2027.

14

Reddy, A. L. M.; Srivastava, A.; Gowda, S. R.; Gullapalli, H.; Dubey, M.; Ajayan, P. M. Synthesis of nitrogen-doped graphene films for lithium battery application. ACS Nano 2010, 4, 6337–6342.

15

Wu, Z.; Ren, W.; Wen, L.; Gao, L.; Zhao, J.; Chen, Z.; Zhou, G.; Li, F.; Cheng, H. Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance. ACS Nano 2010, 4, 3187–3194.

16

Avouris, P.; Chen, Z.; Perebeinos, V. Carbon-based electronics. Nat. Nanotechnol. 2007, 2, 605–615.

17

Chen, J. -H.; Jang, C.; Xiao, S.; Ishigami, M.; Fuhrer, M. S. Intrinsic and extrinsic performance limits of graphene devices on SiO2. Nat. Nanotechnol. 2008, 3, 206–209.

18

Stankovich, S.; Dikin, D. A.; Dommett, G. H. B.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S. Graphene-based vomposite materials. Nature 2006, 442, 282–286.

19

Stankovich, S.; Dikin, D. A.; Piner, R. D.; Kohlhaas, K. A.; Kleinhammes, A.; Jia, Y. Y.; Wu, Y.; Nguyen, S. T.; Ruoff, R. S. Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 2007, 45, 1558–1565.

20

Lee, C.; Wei, X.; Kysar, J. W.; Hone, J. Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 2008, 321, 385–388.

21

Williams, G.; Seger, B.; Kamat, P. V. TiO2–graphene nanocomposites. UV-assisted photocatalytic reduction of graphene oxide. ACS Nano 2008, 2, 1487–1491.

22

Zhang, H.; Lv, X.; Li, Y.; Wang, Y.; Li, J. P25–graphene composite as a high performance photocatalyst. ACS Nano 2010, 4, 380–386.

23

Liang, Y.; Wang, H.; Casalongue, H. S.; Chen, Z.; Dai, H. TiO2 nanocrystals grown on graphene as advanced photocatalytic hybrid materials. Nano Res. 2010, 3, 701–705.

24

Yoo, E. J.; Okata, T.; Akita, T.; Kohyama, M.; Nakamura, J.; Honma, I. Enhanced electrocatalytic activity of Pt sub-nanoclusters on graphene nanosheet surface. Nano Lett. 2009, 9, 2255–2259.

25

Cao, A.; Liu, Z.; Chu, S.; Wu, M.; Ye, Z.; Cai, Z.; Chang, Y.; Wang, S.; Gong, Q.; Liu, Y. A facile one-step method to produce graphene–CdS quantum dot nanocomposites as promising optoelectronic materials. Adv. Mater. 2010, 22, 103–106.

26

Guo, S.; Wen, D; Zhai, Y.; Dong, S.; Wang, E. Platinum nanoparticle ensemble-on-graphene hybrid nanosheet: One-pot, rapid synthesis, and used as new electrode material for electrochemical sensing. ACS Nano 2010, 4, 3959–3968.

27

Zhou, Y. -G.; Chen, J. -J.; Wang, F. -B.; Sheng, Z. -H.; Xia, X. -H. A facile approach to the synthesis of highly electroactive Pt nanoparticles on graphene as an anode catalyst for direct methanol fuel cells. Chem. Commun. 2010, 46, 5951–5953.

28

Guo, S.; Dong, S.; Wang, E. Three-dimensional Pt-on-Pd bimetallic nanodendrites supported on graphene nanosheet: Facile synthesis and used as an advanced nanoelectrocatalyst for methanol oxidation. ACS Nano 2010, 4, 547–555.

29

Wang, P.; Zhai, Y.; Wang, D.; Dong, S. Synthesis of reduced graphene oxide–anatase TiO2 nanocomposite and its improved photo-induced charge transfer properties. Nanoscale 2011, 3, 1640–1645.

30

Ung, T.; Giersig, M.; Dunstan, D.; Mulvaney, P. Spectro-electrochemistry of colloidal silver. Langmuir 1997, 13, 1773–1782.

31

Lin, W.; Warren, T. H.; Nuzzo, R. G.; Girolami, G. S. Surface-selective deposition of palladium and silver films from metal-organic precursors: A novel metal-organic chemical vapor deposition redox transmetalation process. J. Am. Chem. Soc. 1993, 115, 11644–116645.

32

Poter, L. A., Jr.; Choi, H. C.; Ribbe, A. E.; Buriak, J. M. Controlled electroless deposition of noble metal nanoparticle films on germanium surfaces. Nano Lett. 2002, 2, 1067–1071.

33

Sun, Y.; Xia, Y. Mechanistic study on the replacement reaction between silver nanostructures and chloroauric acid in aqueous medium. J. Am. Chem. Soc. 2004, 126, 3892–3901.

34

Allen, M. J.; Tung, V. C.; Kaner, R. B. Honeycomb carbon: A review of graphene. Chem. Rev. 2010, 110, 132–145.

35

Mei, Y.; Sharma, G.; Lu, Y.; Ballauff, M.; Drechsler, M.; Irrgang, T.; Kempe, R. High catalytic activity of platinum nanoparticles immobilized on spherical polyelectrolyte brushes. Langmuir 2005, 21, 12229–12234.

36

Mei, Y.; Lu, Y.; Polzer, F.; Ballauff, M.; Drechsler, M. Catalytic activity of palladium nanoparticles encapsulated in spherical polyelectrolyte brushes and core–shell microgels. Chem. Mater. 2007, 19, 1062–1069.

37

Schrinner, M.; Ballauff, M.; Talmon, Y.; Kauffmann, Y.; Thun, J.; Möller, M.; Breu, J. Single nanocrystals of platinum prepared by partial dissolution of Au–Pt nanoalloys. Science 2009, 323, 617–620.

38

Zeng, J.; Zhang, Q.; Chen, J.; Xia, Y. A comparison study of the catalytic properties of Au-based nanocages, nanoboxes, and nanoparticles. Nano Lett. 2010, 10, 30–35.

39

Yu, T.; Zeng, J.; Lim, B.; Xia, Y. Aqueous-phase synthesis of Pt/CeO2 hybrid nanostructures and their catalytic properties. Adv. Mater. 2010, 22, 5188–5192.

40

Narayanan, R.; El-Sayed, M. A. Effect of catalysis on the stability of metallic nanoparticles: Suzuki reaction catalyzed by PVP–palladium nanoparticles. J. Am. Chem. Soc. 2003, 125, 8340–8347.

41

Saramat, A.; Thormählen, P.; Skoglundh, M.; Attard, G. S.; Palmqvist, A. E. C. Catalytic oxidation of CO over ordered mesoporous platinum. J. Catal. 2008, 253, 253–260.

File
nr-4-11-1153_ESM.pdf (384.1 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 17 June 2011
Revised: 27 July 2011
Accepted: 28 July 2011
Published: 11 August 2011
Issue date: November 2011

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011

Acknowledgements

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 20820102037) and the National Basic Research Program of China (973 Program) (Nos. 2009CB930100 and 2010CB933600). Dr. Ping Wang acknowledges partial financial support from the China Postdoctoral Science Foundation (No. 20090461047).

Return