Journal Home > Volume 4 , Issue 11

The likely goal of nanotechnology is the integration of individual nanodevices into a nanosystem, which includes the nanodevice(s), power harvesting unit, data processing logic system, and possibly wireless communication unit. A nanosystem requires a nanoscale power source to make the entire package extremely small and high performance. The nanofuel and nanobiofuel cells developed here represent a new self-powering approach in nanotechnology, and their power output is high enough to drive nanodevices for performing self-powered sensing. This study shows the feasibility of building self-powered nanosystems for biological sciences, environmental monitoring, defense technology and even personal electronics.


menu
Abstract
Full text
Outline
About this article

From Proton Conductive Nanowires to Nanofuel Cells: A Powerful Candidate for Generating Electricity for Self-Powered Nanosystems

Show Author's information Caofeng PanJun LuoJing Zhu( )
Beijing National Center for Electron Microscopy State Key Laboratory of New Ceramics and Fine Processing Department of Material Science and Engineering, Tsinghua UniversityBeijing 100084 China

Abstract

The likely goal of nanotechnology is the integration of individual nanodevices into a nanosystem, which includes the nanodevice(s), power harvesting unit, data processing logic system, and possibly wireless communication unit. A nanosystem requires a nanoscale power source to make the entire package extremely small and high performance. The nanofuel and nanobiofuel cells developed here represent a new self-powering approach in nanotechnology, and their power output is high enough to drive nanodevices for performing self-powered sensing. This study shows the feasibility of building self-powered nanosystems for biological sciences, environmental monitoring, defense technology and even personal electronics.

Keywords: self-powered nanosystem, Nafion nanowire, nanofuel cell, nanobiofuel cell

References(35)

1

Zheng, G. F.; Patolsky, F.; Cui, Y.; Wang, W. U.; Lieber, C. M. Multiplexed electrical detection of cancer markers with nanowire sensor arrays. Nat. Biotechnol. 2005, 23, 1294–1301.

2

Bai, X. D.; Gao, P. X.; Wang, Z. L.; Wang, E. G. Dual-mode mechanical resonance of individual ZnO nanobelts. Appl. Phys. Lett. 2003, 82, 4806–4808.

3

Zheng, G. F.; Lu, W.; Jin, S.; Lieber, C. M. Synthesis and fabrication of high-performance n-type silicon nanowire transistors. Adv. Mater. 2004, 16, 1890–1893.

4

Wu, W. Z.; Wei, Y. G.; Wang, Z. L. Strain-gated piezotronic logic nanodevices. Adv. Mater. 2010, 22, 4711–4715.

5

Gross, S.; Gilead, A.; Scherz, A.; Neeman, M.; Salomon, Y. Monitoring photodynamic therapy of solid tumors online by BOLD-contrast MRI. Nat. Med. 2003, 9, 1327–1331.

6

Duan, X. F.; Huang, Y.; Agarwal, R.; Lieber, C. M. Single-nanowire electrically driven lasers. Nature 2003, 421, 241–245.

7

Wang, Z. L. Self-powered nanotech-nanosize machines need still tinier power plants. Sci. Am. 2008, 298, 82–87.

8

Qin, Y.; Wang, X. D.; Wang, Z. L. Microfibre-nanowire hybrid structure for energy scavenging. Nature 2008, 451, 809–813.

9

Xu, S.; Qin, Y.; Xu, C.; Wei, Y. G.; Yang, R. S.; Wang, Z. L. Self-powered nanowire devices. Nat. Nanotechnol. 2010, 5, 366–373.

10

Yang, R. S.; Qin, Y.; Dai, L. M.; Wang, Z. L. Power generation with laterally packaged piezoelectric fine wires. Nat. Nanotechnol. 2009, 4, 34–39.

11

Wang, X. D.; Song, J. H.; Liu, J.; Wang, Z. L. Direct-current nanogenerator driven by ultrasonic waves. Science 2007, 316, 102–105.

12

Wang, Z. L.; Song, J. H. Piezoelectric nanogenerators based on zinc oxide nanowire arrays. Science 2006, 312, 242–246.

13

Zhu, G. A.; Yang, R. S.; Wang, S. H.; Wang, Z. L. Flexible high-output nanogenerator based on lateral ZnO nanowire array. Nano Lett. 2010, 10, 3151–3155.

14

Hu, Y. F.; Zhang, Y.; Xu, C.; Zhu, G. A.; Wang, Z. L. High-output nanogenerator by rational unipolar assembly of conical nanowires and its application for driving a small liquid crystal display. Nano Lett. 2010, 10, 5025–5031.

15

Tian, B. Z.; Zheng, X. L.; Kempa, T. J.; Fang, Y.; Yu, N. F.; Yu, G. H.; Huang, J. L.; Lieber, C. M. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature 2007, 449, 885–889.

16

Zhang, L.; Pan, C. F.; Zhu, J. Growth mechanism and optimized parameters to synthesize Nafion-115 nanowire arrays with anodic aluminium oxide membranes as templates. Chinese Phys. Lett. 2008, 25, 3056–3058.

17

Pan, C. F.; Zhang, L.; Zhu, J.; Luo, J.; Cheng, Z. D.; Wang, C. Surface decoration of anodic aluminium oxide in synthesis of Nafion(R)-115 nanowire arrays. Nanotechnology 2007, 18, 015302.

18

Zhang, L.; Pan, C. F.; Zhu, J.; Wang, C. Synthesis and characterization of Nafion(R)-115 nanowire arrays. Nanotechnology 2005, 16, 2242–2244.

19

Wu, H.; Lin, D. D.; Zhang, R.; Pan, W. Oriented nanofibers by a newly modified electrospinning method. J. Am. Ceram. Soc. 2007, 90, 632–634.

20

Wu, H.; Zhang, R.; Liu, X. X.; Lin, D. D.; Pan, W. Electrospinning of Fe, Co, and Ni nanofibers: synthesis, assembly, and magnetic properties. Chem. Mater. 2007, 19, 3506–3511.

21

Li, D.; Xia, Y. N. Electrospinning of nanofibers: reinventing the wheel? Adv. Mater. 2004, 16, 1151–1170.

22

Pan, C. F.; Fang, Y.; Wu, H.; Ahmad, M.; Luo, Z. X.; Li, Q.; Xie, J. B.; Yan, X. X.; Wu, L. H.; Wang, Z. L.; Zhu, J. Generating electricity from biofluid with a nanowire-based biofuel cell for self-powered nanodevices. Adv. Mater. 2010, 22, 5388–5392.

23

Chen, H.; Snyder, J. D.; Elabd, Y. A. Electrospinning and solution properties of Nafion and poly(acrylic acid). Macromolecules 2008, 41, 128–135.

24

Dong, B.; Gwee, L.; Salas-de la Cruz, D.; Winey, K. I.; Elabd, Y. A. Super proton conductive high-purity Nafion nanofibers. Nano Lett. 2010, 10, 3785–3790.

25

Pan, C. F.; Wu, H.; Wang, C.; Wang, B.; Zhang, L.; Chen, Z. D.; Hu, P.; Pan, W.; Zhou, Z. Y.; Yang, X.; Zhu, J. Nanowire-based high performance "micro fuel cell": one nanowire, one fuel cell. Adv. Mater. 2008, 20, 1644–1648.

26

Gruger, A.; Regis, A.; Schmatko, T.; Colomban, P. Nanostructure of Nafion (R) membranes at different states of hydration-an IR and Raman study. Vib. Spectrosc. 2001, 26, 215–225.

27

Alberti, G.; Casciola, M. Solid state protonic conductors, present main applications and future prospects. Solid State Ionics 2001, 145, 3–16.

28

Ha, S.; Adams, B.; Masel, R. I. A miniature air breathing direct formic acid fuel cell. J. Power Sources 2004, 128, 119–124.

29

Rubatat, L.; Rollet, A. L.; Gebel, G.; Diat, O. Evidence of elongated polymeric aggregates in Nafion. Macromolecules 2002, 35, 4050–4055.

30

Delumleywoodyear, T.; Rocca, P.; Lindsay, J.; Dror, Y.; Freeman, A.; Heller, A. A. Polyacrylamide-based redox polymer for connecting redox centers of enzymes to electrodes. Anal. Chem. 1995, 67, 1332–1338.

31

Trudeau, F.; Daigle, F.; Leech, D. Reagentless mediated laccase electrode for the detection of enzyme modulators. Anal. Chem. 1997, 69, 882–886.

32

Barton, S. C.; Kim, H. H.; Binyamin, G.; Zhang, Y. C.; Heller, A. The "wired" laccase cathode: High current density electroreduction of O-2 to water at +0.7 V (NHE) at pH 5. J. Am. Chem. Soc. 2001, 123, 5802–5803.

33

Yang, R. S.; Qin, Y.; Li, C.; Dai, L. M.; Wang, Z. L. Characteristics of output voltage and current of integrated nanogenerators. Appl. Phys. Lett. 2009, 94, 022905.

34

Chen, T.; Barton, S. C.; Binyamin, G.; Gao, Z. Q.; Zhang, Y. C.; Kim, H. H.; Heller, A. A miniature biofuel cell. J. Am. Chem. Soc. 2001, 123, 8630–8631.

35

Coman, V.; Ludwig, R.; Harreither, W.; Haltrich, D.; Gorton, L.; Ruzgas, T.; Shleev, S. A direct electron transfer-based glucose/oxygen biofuel cell operating in human serum. Fuel Cells 2010, 10, 9–16.

Publication history
Copyright
Acknowledgements

Publication history

Received: 15 June 2011
Revised: 12 July 2011
Accepted: 13 July 2011
Published: 15 August 2011
Issue date: November 2011

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011

Acknowledgements

Acknowledgements

The authors thank the National Program on key Basic Research Project (973 Program), the Chinese National Natural Science Foundation, and the National Centre for Nanoscience and Technology of China for support. This work made use of the resources of the Beijing National Center for Electron Microscopy.

Return