Journal Home > Volume 4 , Issue 10

The spatially resolved photoelectric response of a single axial GaAs nanowire pn-diode has been investigated with scanning photocurrent and Kelvin probe force microscopy. Optical generation of carriers at the pn-junction has been shown to dominate the photoresponse. A photocurrent of 88 pA, an open circuit voltage of 0.56 V and a fill factor of 69% were obtained under AM 1.5 G conditions. The photocurrent followed the increasing photoexcitation with 0.24 A/W up to an illumination density of at least 90 W/cm2, which is important for potential applications in concentrator solar cells.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Spatially Resolved Photoelectric Performance of Axial GaAs Nanowire pn-Diodes

Show Author's information Andrey Lysov( )Sasa VinajiMatthias OfferChristoph GutscheIngo RegolinWolfgang MertinMartin GellerWerner ProstGerd BacherFranz-Josef Tegude
Center for Nanointegration Duisburg-Essen University of Duisburg-Essen 47048, Duisburg Germany

Abstract

The spatially resolved photoelectric response of a single axial GaAs nanowire pn-diode has been investigated with scanning photocurrent and Kelvin probe force microscopy. Optical generation of carriers at the pn-junction has been shown to dominate the photoresponse. A photocurrent of 88 pA, an open circuit voltage of 0.56 V and a fill factor of 69% were obtained under AM 1.5 G conditions. The photocurrent followed the increasing photoexcitation with 0.24 A/W up to an illumination density of at least 90 W/cm2, which is important for potential applications in concentrator solar cells.

Keywords: solar cells, electroluminescence, nanowire, GaAs, scanning photocurrent microscopy, Kelvin probe force microscopy

References(41)

1

Gudiksen, M. S.; Lauhon, L. J.; Wang, J.; Smith, D. C.; Lieber, C. M. Growth of nanowire superlattice structures for nanoscale photonics and electronics. Nature 2002, 415, 617–620.

2

Borg, B. M.; Dick, K. A.; Ganjipour, B.; Pistol, M. -E.; Wernersson, L. -E.; Thelander, C. InAs/GaSb heterostructure nanowires for tunnel field-effect transistors. Nano Lett. 2010, 10, 4080–4085.

3

Wallentin, J.; Persson, J. M.; Wagner, J. B.; Samuelson, L.; Deppert, K.; Borgström, M. T. High-performance single nanowire tunnel diodes. Nano Lett. 2010, 10, 974–979.

4

Fuhrer, A.; Fröberg, L. E.; Pedersen, J. N.; Larsson, M. W.; Wacker, A.; Pistol, M. -E.; Samuelson, L. Few electron double quantum dots in InAs/InP nanowire heterostructures. Nano Lett. 2007, 7, 243–246.

5

Tomioka, K.; Motohisa, J.; Hara, S.; Hiruma, S.; Fukui, T. GaAs/AlGaAs core multishell nanowire-based light-emitting diodes on Si. Nano Lett. 2010, 10, 1639–1644.

6

Svensson, C. P. T.; Martensson, T.; Trägardh, J.; Larsson, C.; Rask, M.; Hessman, D.; Samuelson, L.; Ohlsson, J. Monolithic GaAs/InGaP nanowire light emitting diodes on silicon. Nanotechnology, 2008, 19, 305201.

7

Garnett, E.; Yang, P. Light trapping in silicon nanowire solar cells. Nano Lett. 2010, 10, 1082–1087.

8

Diedenhofen, S. L.; Vecchi, G.; Algra, R. E.; Hartsuiker, A.; Muskens, O. L.; Immink, G.; Bakkers, E. P. A. M.; Vos, W. L.; Rivas, J. G. Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods. Adv. Mat. 2009, 21, 973–978.

9

Borgström, M. T.; Wallentin, J.; Heurlin, M.; Fält, S.; Wickert, P.; Leene, J.; Magnusson, M. H.; Deppert, K.; Samuelson, L. Nanowires with promise for photovoltaics. IEEE J. Sel. Top. Quant. Electron. 2010, 99, 1–12.

10

Heurlin, M.; Wickert, P.; Fält, S.; Borgström, M. T.; Deppert, K.; Samuelson, L.; Magnusson, M. H. Axial InP nanowire tandem junction grown on a silicon substrate. Nano Lett. 2011, 11, 2028–2031.

11

Tian, B.; Zheng, X.; Kempa, T. J.; Fang, Y.; Yu, N.; Yu, G. Huang, J.; Lieber, C. M. Coaxial silicon nanowires as solar cells and nanoelectronic power sources. Nature, 2007, 449, 885–889.

12

Kempa, T. J.; Tian, B.; Kim, D. R.; Hu, J.; Zheng, X.; Lieber, C. M. Single and tandem axial p–i–n nanowire photovoltaic devices. Nano Lett. 2008, 8, 3456–3460.

13

King, R. R.; Law, D. C.; Edmondson, K. M.; Fetzer, C. M.; Kinsey, G. S.; Yoon, H.; Sherif, R. A.; Karam, N. H. 40% efficient metamorphic GaInP/GaInAs/Ge multijunction solar cells. Appl. Phys. Lett. 2007, 90, 183516.

14

van Kouwen, M. P.; van Weert, M. H. M.; Reimer, M. E.; Akopian, N.; Perinetti, U.; Algra, R. E.; Bakkers, E. P. A. M.; Kouwenhoven, L. P.; Zwiller, V. Single quantum dot nanowire photodetectors. Appl. Phys. Lett. 2010, 97, 113108.

15

Goto, H.; Nosaki, K.; Tomioka, K.; Hara, S.; Hiruma, K.; Motohisa, J.; Fukui, T. Growth of core–shell InP nanowires for photovoltaic application by selective-area metal organic vapor phase epitaxy. Appl. Phys. Express, 2009, 2, 035004.

16

Dong, Y.; Tian, B.; Kempa, T. J.; Lieber, C. M. Coaxial group Ⅲ–Nitride nanowire photovoltaics. Nano Lett. 2009, 9, 2183–2187.

17

Colombo, C.; Heiß, M.; Grätzel, M.; Fontcuberta i Morral, A. Gallium arsenide p-i-n radial structures for photovoltaic applications. Appl. Phys. Lett. 2009, 94, 173108.

18

Czaban, J. A.; Thompson, D. A.; LaPierre, R. R. GaAs core−shell nanowires for photovoltaic applications. Nano Lett. 2009, 9, 148–154.

19
Karam, N. H.; Sherif, R. A.; King, R. R. Multijunction concentrator solar cells: An enabler for low-cost photovoltaic systems. In Concentrator Photovoltaics; Luque Lopéz, A. L.; Andreev, V. M., Eds. Springer: Berlin, 2007; p. 200.
20

Wanlass, M. W.; Ahrenkiel, S. P.; Ahrenkiel, R. K.; Albin, D. S.; Carapella, J. J.; Duda, A.; Geisz, J. F.; Kurtz, S.; Moriarty, T.; Wehrer, R. J.; Wernsman, B. Lattice-mismatched approaches for high-performance, Ⅲ–Ⅴ, photovoltaic energy converters. In Proc. 31st IEEE Photovoltaic Specialists Conf., Lake Buene Vista, Florida, 2005; pp. 530–535.

21

Gutsche, C.; Regolin, I.; Blekker, K.; Lysov, A.; Prost, W.; Tegude, F. -J. Controllable p-type doping of GaAs nanowires during vapor–liquid–solid growth. J. Appl. Phys. 2009, 105, 024305,

22

Gutsche, C.; Lysov, A.; Regolin, I.; Blekker, K.; Prost, W.; Tegude, F. -J. n-type doping of vapor-liquid-solid grown GaAs nanowires. Nanoscale Res. Lett. 2011, 6, 65–70.

23

Regolin, I.; Gutsche, C.; Lysov, A.; Blekker, K.; Li, Z. -A.; Spasova, M.; Prost, W.; Tegude, F. -J. Axial pn-junctions formed by MOVPE using DEZn and TESn in vapour-liquid-solid grown GaAs nanowires. J. Cryst. Growth 2011, 315, 143–147.

24

Lysov, A.; Offer, M.; Gutsche, C.; Regolin, I.; Topaloglu, S.; Geller, M.; Prost, W.; Tegude, F. -J. Optical properties of heavily doped GaAs nanowires and electroluminescent nanowire structures. Nanotechnology, 2011, 22, 085702.

25

Nonnenmacher, M.; O'Boyle, M. P.; Wickramasinghe, H. K. Kelvin probe force microscopy. Appl. Phys. Lett. 1991, 58, 2921–2923.

26

Katzer, Kl. -D.; Mertin, W.; Bacher, G.; Jaeger, A.; Streubel, K. Voltage drop in an (AlxGa1−x)0.5In0.5P light-emitting diode probed by Kelvin probe force microscopy. Appl. Phys. Lett. 2006, 89, 103522.

27

Lévêque, G.; Girard, P.; Skouri, E.; Yarekha, D. Measurements of electric potential in a laser diode by Kelvin probe force microscopy. Appl. Surf. Sci. 2000, 157, 251–255.

28

Minot, E. D.; Kelkensberg, F.; van Kouwen, M.; van Dam, J. A.; Kouwenhoven, L. P.; Zwiller, V.; Borgström, M.; Wunnicke, O.; Verheijen, M. A.; Bakkers, E. P. A. M. Single quantum dot nanowire LEDs. Nano Lett. 2007, 7, 367–371.

29

Vinaji, S.; Lochthofen, A.; Mertin, W.; Regolin, I.; Gutsche, C.; Prost, W.; Tegude, F. J.; Bacher, G. Material and doping transitions in single GaAs-based nanowires probed by Kelvin probe force microscopy. Nanotechnology 2009, 20, 385702.

30

Koren, E.; Rosenwaks, Y.; Allen, J. E.; Hemesath, E. R.; Lauhon, L. J. Nonuniform doping distribution along silicon nanowires measured by Kelvin probe force microscopy and scanning photocurrent microscopy. Appl. Phys. Lett. 2009, 95, 092105.

31

Koren, E.; Hyun, J. K.; Givan, U.; Hemesath, E. R.; Lauhon, L. J.; Rosenwaks, Y. Obtaining uniform dopant distributions in VLS-grown Si nanowires. Nano Lett. 2011, 11, 183–187.

32

Robin, F.; Jacobs, H.; Homan, O.; Stemmer, A.; Bächtold, W. Investigation of the cleaved surface of a p–i–n laser using Kelvin probe force microscopy and two-dimensional physical simulations. Appl. Phys. Lett. 2000, 76, 2907–2909.

33

Bürgi, L.; Sirringhaus, H.; Friend, R. H. Noncontact potentiometry of polymer field-effect transistors. Appl. Phys. Lett. 2002, 80, 2913–2915.

34

Tiwari, S.; Wright, S. L. Material properties of p-type GaAs at large dopings. Appl. Phys. Lett. 1990, 56, 563–565.

35

Liang, B. W.; Zou, Y. X.; Zhou, B. L.; Milnes, A. G. Minority carrier diffusion lengths in bulk n-type GaAs. J. Elect. Mater. 1987, 16, 177–180.

36

Graham, R.; Miller, C.; Oh, E.; Yu, D. Electric field dependent photocurrent decay length in single lead sulfide nanowire field effect transistors. Nano. Lett. 2011, 11, 717–722.

37

Luque, A.; Hegedus, S. Handbook of Photovoltaic Science and Engineering; John Wiley & Sons, 2003; p. 73.

DOI
38

Bohren, C.; Huffman, D. R. Absorption and Scattering of Light by Small Particles; Wiley-VCH: New York, 1983; pp. 202–213.

39

Brönstrup, G.; Jahr, N.; Leiterer, C.; Csάki, A.; Fritzsche, W.; Christiansen, S. Optical properties of individual silicon nanowires for photonic devices. ACS Nano 2010, 4, 7113–7122.

40

Parkinson, P.; Joyce, H. J.; Gao, Q.; Tan, H. H.; Zhang, X.; Zou, J.; Jagadish, C.; Herz, L. M.; Johnston, M. B. Carrier lifetime and mobility enhancement in nearly defect-free core–shell nanowires measured using time-resolved terahertz spectroscopy. Nano Lett. 2009, 9, 3349–3353.

41

LaPierre, R. R. Numerical model of current-voltage characteristics and efficiency of GaAs nanowire solar cells. J. Appl. Phys. 2011, 109, 034311.

Video
nr-4-10-987_ESM_Video.avi
Publication history
Copyright
Acknowledgements

Publication history

Received: 13 April 2011
Revised: 26 May 2011
Accepted: 28 May 2011
Published: 10 June 2011
Issue date: October 2011

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011

Acknowledgements

Acknowledgements

This work was supported by the European project NaSoL within the Ziel2.NRW program and the Sonder-forschungbereich SFB 445. We thank G. Brönstrup for assistance with theoretical calculations.

Return