Journal Home > Volume 4 , Issue 10

The growth of Fe nanoclusters on the Ge(001) surface has been studied using low-temperature scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. STM results indicate that Fe nucleates on the Ge(001) surface, forming well-ordered nanoclusters of uniform size. Depending on the preparation conditions, two types of nanoclusters were observed having either four or sixteen Fe atoms within a nanocluster. The results were confirmed by DFT calculations. Annealing the nanoclusters at 420 K leads to the formation of nanorow structures, due to cluster mobility at such temperature. The Fe nanoclusters and nanorow structures formed on the Ge(001) surface show a superparamagnetic behaviour as measured by X-ray magnetic circular dichroism.


menu
Abstract
Full text
Outline
About this article

Fe Nanoclusters on the Ge(001) Surface Studied by Scanning Tunneling Microscopy, Density Functional Theory Calculations and X-Ray Magnetic Circular Dichroism

Show Author's information Olaf Lübben1( )Sergey A. Krasnikov1Alexei B. Preobrajenski2Barry E. Murphy1Igor V. Shvets1
Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) School of PhysicsTrinity College Dublin Dublin 2 Ireland
MAX-lab Lund UniversityBox 118 22100 Lund Sweden

Abstract

The growth of Fe nanoclusters on the Ge(001) surface has been studied using low-temperature scanning tunneling microscopy (STM) and density functional theory (DFT) calculations. STM results indicate that Fe nucleates on the Ge(001) surface, forming well-ordered nanoclusters of uniform size. Depending on the preparation conditions, two types of nanoclusters were observed having either four or sixteen Fe atoms within a nanocluster. The results were confirmed by DFT calculations. Annealing the nanoclusters at 420 K leads to the formation of nanorow structures, due to cluster mobility at such temperature. The Fe nanoclusters and nanorow structures formed on the Ge(001) surface show a superparamagnetic behaviour as measured by X-ray magnetic circular dichroism.

Keywords: self-assembly, density functional theory calculations, scanning tunnelling microscopy, Ge(001), iron nanoclusters, X-ray magnetic circular dichroism

References(44)

1

Barth, J. V.; Costantini, G.; Kern, K. Engineering atomic and molecular nanostructures at surfaces. Nature 2005, 437, 671–679.

2

Zhu, K.; Wang, D.; Liu, J. Self-assembled materials for catalysis. Nano Res. 2009, 2, 1–29.

3

Xu, W.; Dong, M.; Gersen1, H.; Vázquez-Campos, S.; Bouju, X.; Lægsgaard, E.; Stensgaard, I.; Crego-Calama, M.; Reinhoudt, D. N.; Linderoth, T. R., et al. Exploring the transferability of large supramolecular assemblies to the vacuum–solid interface. Nano Res. 2009, 2, 535–542.

4

Xue, C.; Tu, B.; Zhao, D. Facile fabrication of hierarchically porous carbonaceous monoliths with ordered mesostructure via an organic–organic self-assembly. Nano Res. 2009, 2, 242–253.

5

Krasnikov, S. A.; Sergeeva, N. N.; Sergeeva, Y. N.; Senge, M. O.; Cafolla, A. A. Self-assembled rows of Ni porphyrin dimers on the Ag(111) surface. Phys. Chem. Chem. Phys. 2010, 12, 6666–6671.

6

Schnadt, J.; Xu, W.; Vang, R. T.; Knudsen, J.; Li, Z.; Lægsgaard, E.; Besenbacher, F. Interplay of adsorbate–adsorbate and adsorbate–substrate interactions in self-assembled molecular surface nanostructures. Nano Res. 2010, 3, 459–471.

7

Krasnikov, S. A.; Beggan, J. P.; Sergeeva, N. N.; Senge, M. O.; Cafolla, A. A. Ni(Ⅱ) porphine nanolines grown on a Ag(111) surface at room temperature. Nanotechnology 2009, 20, 135301.

8

Krasnikov, S. A.; Murphy, S.; Berdunov, N.; McCoy, A. P.; Radican, K.; Shvets, I. V. Self-limited growth of triangular PtO2 nanoclusters on the Pt(111) surface. Nanotechnology 2010, 21, 335301.

9

Krasnikov, S. A.; Doyle, C. M.; Sergeeva, N. N.; Preobrajenski, A. B.; Vinogradov, N. A.; Sergeeva, Y. N.; Zakharov, A. A.; Senge, M. O.; Cafolla, A. A. Formation of extended covalently bonded Ni porphyrin networks on the Au(111) surface. Nano Res. 2011, 4, 376–384.

10

Zandvliet, H. J. W. The Ge(001) surface. Phys. Rep. 2003, 388, 1–40.

11

Wang, J.; Li, M.; Altman, E. I. Scanning tunneling microscopy study of self-organized Au atomic chain growth on Ge(001). Phys. Rev. B 2004, 70, 233312.

12

Krasnikov, S. A.; Bozhko, S. I.; Radican, K.; Lübben, O.; Murphy, B.; Vadapoo, S. -R.; Wu, H. -C.; Abid, M.; Semenov, V. N.; Shvets, I. V. Self-assembly and ordering of C60 on the WO2/W(110) surface. Nano Res. 2011, 4, 194–203.

13

Jordan, K.; Shvets, I. V. Self-assembled Fe nanodots on Ge(001). Appl. Phys. Lett. 2006, 88, 193111.

14

Li, J. -L.; Jia, J. -F.; Liang, X. -J.; Liu, X.; Wang, J. -Z.; Xue, Q. -K.; Li, Z. -Q.; Tse, J. -S.; Zhang, Z.; Zhang, S. B. Spontaneous assembly of perfectly ordered identical-size nanocluster arrays. Phys. Rev. Lett. 2002, 88, 066101.

15

Sullivan, J. M.; Boishin, G. I.; Whitman, L. J.; Hanbicki, A. T.; Jonker, B. T.; Erwin, S. C. Cross-sectional scanning tunneling microscopy of Mn-doped GaAs: Theory and experiment. Phys. Rev. B 2003, 68, 235324.

16

Dietl, T.; Ohno, H.; Matsukura, F.; Cibert, J.; Ferrand, D. Zener model description of ferromagnetism in zinc-blende magnetic semiconductors. Science 2000, 287, 1019–1022.

17

Wolf, S.; Awschalom, D.; Buhrman, R.; Daughton, J.; Von Molnar, S.; Roukes, M.; Chtchelkanova, A.; Treger, D. Spintronics: A spin-based electronics vision for the future. Science 2001, 294, 1488–1495.

18

Timm, C. Disorder effects in diluted magnetic semiconductors. J. Phys. : Condens. Matter 2003, 15, R1865–R1896.

19

Žutić, I.; Fabian, J.; Das Sarma, S. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 2004, 76, 323–410.

20

Dash, W.; Newman, R. Intrinsic optical absorption in single-crystal germanium and silicon at 77 K and 300 K. Phys. Rev. 1955, 99, 1151–1155.

21

Ohno, H. Making nonmagnetic semiconductors ferromagnetic. Science 1998, 281, 951–956.

22

Park, Y. D.; Hanbicki, A. T.; Erwin, S. C.; Hellberg, C. S.; Sullivan, J. M.; Mattson, J. E.; Ambrose, T. F.; Wilson, A.; Spanos, G.; Jonker, B. T. A group-IV ferromagnetic semiconductor: MnxGe1−x. Science 2002, 295, 651–654.

23

MacDonald, A. H.; Schiffer, P.; Samarth, N. Ferromagnetic semiconductors: Moving beyond (Ga, Mn)As. Nat. Mater. 2005, 4, 195–202.

24

Choi, S.; Hong, S. C.; Cho, S.; Kim, Y.; Ketterson, J. B.; Jung, C. -U.; Rhie, K.; Kim, B. -J.; Kim, Y. C. Ferromagnetic properties in Cr, Fe-doped Ge single crystals. J. Appl. Phys. 2003, 93, 7670.

25

Choi, S.; Hong, S. C.; Cho, S.; Kim, Y.; Ketterson, J. B.; Jung, C. -U.; Rhie, K.; Kim, B. -J.; Kim, Y. C. Ferromagnetism in Cr-doped Ge. Appl. Phys. Lett. 2002, 81, 3606.

26

Ionescu, A.; Tselepi, M.; Gillingham, D. M.; Wastlbauer, G.; Steinmüller, S. J.; Beere, H. E.; Ritchie, D. A.; Bland, J. A. C. Submonolayer growth of Fe on a GaAs(100)-2×6 reconstructed surface. Phys. Rev. B 2005, 72, 125404.

27

Cho, S.; Choi, S.; Hong, S. C.; Kim, Y.; Ketterson, J. B.; Kim, B. J.; Kim, Y. C.; Jung, J. H. Ferromagnetism in Mn-doped Ge. Phys. Rev. B 2002, 66, 033303.

28

Zhu, W.; Weitering, H. H.; Wang, E. G.; Kaxiras, E.; Zhang, Z. Contrasting growth modes of Mn on Ge(100) and Ge(111) surfaces: Subsurface segregation versus intermixing. Phys. Rev. Lett. 2004, 93, 126102.

29

Freeland, J. W.; Kodama, R. H.; Vedpathak, M.; Erwin, S. C.; Keavney, D. J.; Winarski, R.; Ryan, P.; Rosenberg, R. A. Induced Ge spin polarization at the Fe/Ge interface. Phys. Rev. B 2004, 70, 033201.

30

Cantoni, M.; Riva, M.; Isella, G.; Bertacco, R.; Ciccacci, F. Fe thin films grown on single-crystal and virtual Ge(001) substrates. J. Appl. Phys. 2005, 97, 093906.

31

Chaika, A. N.; Nazin, S. S.; Semenov, V. N.; Bozhko, S. I.; Lübben, O.; Krasnikov, S. A.; Radican, K.; Shvets, I. V. Selecting the tip electron orbital for scanning tunneling microscopy imaging with sub-Ångström lateral resolution. Europhys. Lett. 2010, 92, 46003.

32

Schlier, R. E.; Farnsworth, H. E. Structure and adsorption characteristics of clean surfaces of germanium and silicon. J. Chem. Phys 1959, 30, 917–926.

33

Kevan, S. D. Surface states and reconstruction on Ge(001). Phys. Rev. B 1985, 32, 2344–2350.

34

Kevan, S.; Stoffel, N. G. Metal–insulator transition on the Ge(001) surface. Phys. Rev. Lett. 1984, 53, 702–705.

35

Gurlu, O.; Zandvliet, H. J. W.; Poelsema, B. Electronic properties of (2×1) and c(4×2) domains on Ge(001) studied by scanning tunneling spectroscopy. Phys. Rev. Lett 2004, 93, 066101.

36

Kipp, L.; Manzke, R.; Skibowski, M. An intrinsic metallic surface state on Ge(001) 2×1. Solid State Commun. 1995, 93, 603–607.

37

Kubby, J. A.; Griffith, J. E.; Becker, R. S.; Vickers, J. S. Tunneling microscopy of Ge(001). Phys. Rev. B 1987, 36, 6079–6093.

38

Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab-initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 11169–11186.

39

Ceperley, D. M.; Alder, B. J. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 1980, 45, 566–569.

40

Vanpoucke, D. E. P. Ab initio study of Pt induced nanowires on Ge(001). Ph. D. Dissertation, University of Twente, Enschede, The Netherlands, 2009.

41

Cox, D.; Trevor, D.; Whetten, R.; Rohlfing, E.; Kaldor, A. Magnetic behavior of free-iron and iron oxide clusters. Phys. Rev. B 1985, 32, 7290–7298.

42

Ma, P.; Norton, P. R. Growth of ultrathin Fe films on Ge(100): Structure and magnetic properties. Phys. Rev. B 1997, 56, 9881–9886.

43

Torelli, P.; Benedetti, S.; Luches, P.; Gragnaniello, L.; Fujii, J.; Valeri, S. Morphology-induced magnetic phase transitions in Fe deposits on MgO films investigated with XMCD and STM. Phys. Rev. B 2009, 79, 035408.

44

Hu, Y.; Zhang, Z.; Zhou, Q.; Liu, W.; Li, Z.; Meng, D. Realignment of slanted Fe nanorods on silicon substrates by a strong magnetic field. Nano Res. 2010, 3, 438–443.

Publication history
Copyright
Acknowledgements

Publication history

Received: 30 March 2011
Revised: 09 May 2011
Accepted: 23 May 2011
Published: 06 June 2011
Issue date: October 2011

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011

Acknowledgements

Acknowledgements

This work was supported by Science Foundation Ireland (Principal Investigator grant No. 06/IN.1/I91 and Research Frontiers Programme grant No. 07/ RFP/MASF185). The authors wish to thank Trinity College High Performance Cluster, funded by the Higher Education Authority under the Program for Research in Third Level Institutes, for the use of their computing facilities.

Return