Journal Home > Volume 4 , Issue 10

Uniquely structured rutile TiO2 microspheres with exposed nano-acicular single crystals have been successfully synthesized via a facile hydrothermal method. After calcination at 450 ℃ for 2 h, the rutile TiO2 microspheres with a high surface area of 132 m2/g have been utilized as a light harvesting enhancement material for dye-sensitized solar cells (DSSCs). The resultant DSSCs exhibit an overall light conversion efficiency of 8.41% for TiO2 photoanodes made of rutile TiO2 microspheres and anatase TiO2 nanoparticles (mass ratio of 1:1), significantly higher than that of pure anatase TiO2 nanoparticle photoanodes of similar thickness (6.74%). Such a significant improvement in performance can be attributed to the enhanced light harvesting capability and synergetic electron transfer effect. This is because the photoanodes made of rutile TiO2 microsphere possess high refractive index which improves the light utilisation efficiency, suitable microsphere core sizes (450–800 nm) to effectively scatter visible light, high surface area for dye loading, and synergetic electron transfer effects between nanoparticulate anatase and nano-acicular rutile single crystals phases giving high electron collection efficiency.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Rutile TiO2 Microspheres with Exposed Nano-Acicular Single Crystals for Dye-Sensitized Solar Cells

Show Author's information Haimin Zhang1Hua Yu1Yanhe Han1Porun Liu1Shanqing Zhang1Peng Wang2Yibing Cheng3Huijun Zhao1( )
Centre for Clean Environment and Energy and Griffith School of Environment Griffith University Gold Coast CampusQueensland 4222 Australia
State Key Laboratory of Polymer Physics and Chemistry Changchun Institute of Applied Chemistry Chinese Academy of SciencesChangchun 130022 China
Department of Materials Engineering Monash University, MelbourneVictoria 3800 Australia

Abstract

Uniquely structured rutile TiO2 microspheres with exposed nano-acicular single crystals have been successfully synthesized via a facile hydrothermal method. After calcination at 450 ℃ for 2 h, the rutile TiO2 microspheres with a high surface area of 132 m2/g have been utilized as a light harvesting enhancement material for dye-sensitized solar cells (DSSCs). The resultant DSSCs exhibit an overall light conversion efficiency of 8.41% for TiO2 photoanodes made of rutile TiO2 microspheres and anatase TiO2 nanoparticles (mass ratio of 1:1), significantly higher than that of pure anatase TiO2 nanoparticle photoanodes of similar thickness (6.74%). Such a significant improvement in performance can be attributed to the enhanced light harvesting capability and synergetic electron transfer effect. This is because the photoanodes made of rutile TiO2 microsphere possess high refractive index which improves the light utilisation efficiency, suitable microsphere core sizes (450–800 nm) to effectively scatter visible light, high surface area for dye loading, and synergetic electron transfer effects between nanoparticulate anatase and nano-acicular rutile single crystals phases giving high electron collection efficiency.

Keywords: High refractive index, rutile TiO2 microspheres, acicular single crystals, synergetic effect, dye-sensitized solar cells (DSSCs)

References(35)

1

O'Regan, B.; Graetzel, M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal titanium dioxide films. Nature 1991, 353, 737–740.

2

Luo, Y.; Li, D.; Meng, Q. Towards optimization of materials for dye-sensitized solar cells. Adv. Mater. 2009, 21, 4647–4651.

3

Qiu, Y.; Chen, W.; Yang, S. Double-layered photoanodes from variable-size anatase TiO2 nanospindles: A candidate for high-efficiency dye-sensitized solar cells. Angew. Chem. Int. Ed. 2010, 49, 3675–3679.

4

Kang, S. H.; Choi, S. H.; Kang, M. S.; Kim, J. Y.; Kim, H. S.; Hyeon, T.; Sung, Y. E. Nanorod-based dye-sensitized solar cells with improved charge collection efficiency. Adv. Mater. 2008, 20, 54–58.

5

Hagfeldt, A.; Boschloo, G.; Sun, L.; Kloo, L.; Pettersson, H. Dye-sensitized solar cells. Chem. Rev. 2010, 110, 6595–6663.

6

Preat, J.; Jacquemin, D.; Perpete, E. A. Towards new efficient dye-sensitised solar cells. Energy Environ. Sci. 2010, 3, 891–904.

7

Kim, Y. J.; Lee, M. H.; Kim, H. J.; Lim, G.; Choi, Y. S.; Park, N. G.; Kim, K.; Lee, W. I. Formation of highly efficient dye-sensitized solar cells by hierarchical pore generation with nanoporous TiO2 spheres. Adv. Mater. 2009, 21, 3668–3673.

8

Yu, J.; Fan, J.; Zhao, L. Dye-sensitized solar cells based on hollow anatase TiO2 spheres prepared by self-transformation method. Electrochim. Acta 2009, 55, 597–602.

9

Hore, S.; Vetter, C.; Kern, R.; Smit, H.; Hinsch, A. Influence of scattering layers on efficiency of dye-sensitized solar cells. Sol. Energy Mater. Sol. Cells 2006, 90, 1176–1188.

10

Sauvage, F.; Chen, D.; Comte, P.; Huang, F.; Heiniger, L. P.; Cheng, Y. B.; Caruso, R. A.; Graetzel, M. Dye-sensitized solar cells employing a single film of mesoporous TiO2 beads achieve power conversion efficiencies over 10%. ACS Nano 2010, 4, 4420–4425.

11

Chen, D.; Huang, F.; Cheng, Y. B.; Caruso, R. A. Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: A superior candidate for high performance dyesensitized solar cells. Adv. Mater. 2009, 21, 2206–2210.

12

Huang, F.; Chen, D.; Zhang, X. L.; Caruso, R. A.; Cheng, Y. B. Dual-function scattering layer of submicrometer-sized mesoporous TiO2 beads for high-efficiency dye-sensitized solar cells. Adv. Funct. Mater. 2010, 20, 1301–1305.

13

Zhang, H.; Han, Y.; Liu, X.; Liu, P.; Yu, H.; Zhang, S.; Yao, X.; Zhao, H. Anatase TiO2 microspheres with exposed mirror-like plane {001} facets for high performance dyesensitized solar cells (DSSCs). Chem. Commun. 2010, 46, 8395–8397.

14

Zhang, G.; Bai, Y.; Li, R.; Shi, D.; Wenger, S.; Zakeeruddin, S. M.; Graetzel, M.; Wang, P. Employ a bisthienothiophene linker to construct an organic chromophore for efficient and stable dye-sensitized solar cells. Energy Environ. Sci. 2009, 2, 92–95.

15

Graetzel, M. Solar energy conversion by dye-sensitized photovoltaic cells. Inorg. Chem. 2005, 44, 6841–6851.

16

Chiba, Y.; Islam, A.; Komiya, R.; Koide, N.; Han, L. Conversion efficiency of 10.8% by a dye-sensitized solar cell using a TiO2 electrode with high haze. Appl. Phys. Lett. 2006, 88, 223505.

17

Wang, Z. S.; Kawauchi, H.; Kashima, T.; Arakawa, H. Significant influence of TiO2 photoelectrode morphology on the energy conversion efficiency of N719 dye-sensitized solar cell. Coord. Chem. Rev. 2004, 248, 1381–1389.

18

Rothenberger, G.; Comte, P.; Graetzel, M. A contribution to the optical design of dye-sensitized nanocrystalline solar cells. Sol. Energy Mater. Sol. Cells 1999, 58, 321–336.

19

Zhang, Q.; Dandeneau, C. S.; Park, K.; Liu, D.; Zhou, X.; Cao, G.; Jeong, Y. H. Light scattering with oxide nanocrystallite aggregates for dye-sensitized solar cell application. J. Nanophoton. 2010, 4, 041540.

20

Yang, W. G.; Wan, F. R.; Chen, Q. W.; Li, J. J.; Xu, D. S. Controlling synthesis of well-crystallized mesoporous TiO2 microspheres with ultrahigh surface area for high-performance dye-sensitized solar cells. J. Mater. Chem. 2010, 20, 2870–2876.

21

Kumar, K. N. P.; Keizer, K.; Burggraaf, A. J.; Okubo, T.; Nagamoto, H.; Morooka, S. Densification of nanostructured titania assisted by a phase transformation. Nature 1992, 358, 48–51.

22

Feng, X.; Shankar, K.; Varghese, O. K.; Paulose, M.; Latempa, T. J.; Grimes, C. A. Vertically aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: Synthesis details and applications. Nano Lett. 2008, 8, 3781–3786.

23

Liu, B.; Aydil, E. S. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 2009, 131, 3985–3990.

24

Shankar, K.; Feng, X.; Grimes, C. A. Enhanced harvesting of red photons in nanowire solar cells: Evidence of resonance energy transfer. ACS Nano 2009, 3, 788–794.

25

Ye, Q.; Liu, P. Y.; Tang, Z. F.; Zhai, L. Hydrophilic properties of nano-TiO2 thin films deposited by rf magnetron sputtering. Vacuum 2007, 81, 627–631.

26

Hosono, E.; Fujihara, S.; Kakiuchi, K.; Imai, H. Growth of submicrometer-scale rectangular parallelepiped rutile TiO2 films in aqueous TiCl3 solutions under hydrothermal conditions. J. Am. Chem. Soc. 2004, 126, 7790–7791.

27

Park, N. G.; van de Lagemaat, J.; Frank, A. J. Comparison of dye-sensitized rutile- and anatase-based TiO2 solar cells. J. Phys. Chem. B 2000, 104, 8989–8994.

28

Hasan, M. M.; Haseeb, A. S. M. A.; Saidur, R.; Masjuki, H. H. Effects of annealing treatment on optical properties of anatase TiO2 thin films. Int. J. Chem. Biomol. Eng. 2008, 1, 93–97.

29

Koo, H. J.; Park, J.; Yoo, B.; Yoo, K.; Kim, K.; Park, N. G. Size-dependent scattering efficiency in dye-sensitized solar cell. Inorg. Chim. Acta 2008, 361, 677–683.

30

Hu, W.; Li, L.; Tong, W.; Li, G. Supersaturated spontaneous nucleation to TiO2 microspheres: Synthesis and giant dielectric performance. Chem. Commun. 2010, 46, 3113–3115.

31

Adachi, M.; Murata, Y.; Takao, J.; Jiu, J.; Sakamoto, M.; Wang, F. Highly efficient dye-sensitized solar cells with a titania thin-film electrode composed of a network structure of single-crystal-like TiO2 nanowires made by the "Oriented Attachment" mechanism. J. Am. Chem. Soc. 2004, 126, 14943–14949.

32

Li, G.; Richter, C. P.; Milot, R. L.; Cai, L.; Schmuttenmaer, C. A.; Crabtree, R. H.; Brudvig, G. W.; Batista, V. S. Synergistic effect between anatase and rutile TiO2 nanoparticles in dye-sensitized solar cells. Dalton Trans. 2009, 10078–10085.

33

Diebold, U. The surface science of titanium dioxide. Surf. Sci. Rep. 2003, 48, 53–229.

34

van de Hulst, H. C. Light Scattering by Small Particles; Wiley: New York, 1957.

DOI
35

Zaban, A.; Greenshtein, M.; Bisquert, J. Determination of the electron lifetime in nanocrystalline dye solar cells by open-circuit voltage decay measurements. ChemPhysChem 2003, 4, 859–864.

File
nr-4-10-938_ESM.pdf (734.4 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 29 March 2011
Revised: 08 May 2011
Accepted: 08 May 2011
Published: 23 May 2011
Issue date: October 2011

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011

Acknowledgements

Acknowledgements

This work was financially supported by the Australian Research Council (ARC).

Return