Journal Home > Volume 4 , Issue 10

We report the fabrication of a highly sensitive field-effect transistor (FET) biosensor using thermally-reduced graphene oxide (TRGO) sheets functionalized with gold nanoparticle (NP)–antibody conjugates. Probe antibody was labeled on the surface of TRGO sheets through Au NPs and electrical detection of protein binding (Immunoglobulin G/IgG and anti-Immunoglobulin G/anti-IgG) was accomplished by FET and direct current (dc) measurements. The protein binding events induced significant changes in the resistance of the TRGO sheet, which is referred to as the sensor response. The dependence of the sensor response on the TRGO base resistance in the sensor and the antibody areal density on the TRGO sheet was systematically studied, from which a correlation of the sensor response with sensor parameters was found: the sensor response was more significant with larger TRGO base resistance and higher antibody areal density. The detection limit of the novel biosensor was around the 0.2 ng/mL level, which is among the best of reported carbon nanomaterial-based protein sensors and can be further optimized by tuning the sensor structure.


menu
Abstract
Full text
Outline
Electronic supplementary material
About this article

Highly Sensitive Protein Sensor Based on Thermally-Reduced Graphene Oxide Field-Effect Transistor

Show Author's information Shun MaoKehan YuGanhua LuJunhong Chen( )
Department of Mechanical Engineering University of Wisconsin-Milwaukee 3200 N. Cramer StMilwaukee WI 53211 USA

Abstract

We report the fabrication of a highly sensitive field-effect transistor (FET) biosensor using thermally-reduced graphene oxide (TRGO) sheets functionalized with gold nanoparticle (NP)–antibody conjugates. Probe antibody was labeled on the surface of TRGO sheets through Au NPs and electrical detection of protein binding (Immunoglobulin G/IgG and anti-Immunoglobulin G/anti-IgG) was accomplished by FET and direct current (dc) measurements. The protein binding events induced significant changes in the resistance of the TRGO sheet, which is referred to as the sensor response. The dependence of the sensor response on the TRGO base resistance in the sensor and the antibody areal density on the TRGO sheet was systematically studied, from which a correlation of the sensor response with sensor parameters was found: the sensor response was more significant with larger TRGO base resistance and higher antibody areal density. The detection limit of the novel biosensor was around the 0.2 ng/mL level, which is among the best of reported carbon nanomaterial-based protein sensors and can be further optimized by tuning the sensor structure.

Keywords: field-effect transistor, Biosensor, thermally-reduced graphene oxide, protein detection

References(45)

1

Giardi, M. T.; Scognamiglio, V.; Rea, G.; Rodio, G.; Antonacci, A.; Lambreva, M.; Pezzotti, G.; Johanningmeier, U. Optical biosensors for environmental monitoring based on computational and biotechnological tools for engineering the photosynthetic D1 protein of Chlamydomonas reinhardtii. Biosens. Bioelectron. 2009, 25, 294–300.

2

Higgins, V. J.; Rogers, P. J.; Dawes, I. W. Application of genome-wide expression analysis to identify molecular markers useful in monitoring industrial fermentations. Appl. Environ. Microbiol. 2003, 69, 7535–7540.

3

Jain, K. K. Applications of nanobiotechnology in clinical diagnostics. Clin. Chem. 2007, 53, 2002–2009.

4

Lee, S. M.; Lee, S. B.; Park, C. H.; Choi, J. Expression of heat shock protein and hemoglobin genes in Chironomus tentans (Diptera, chironomidae) larvae exposed to various environmental pollutants: A potential biomarker of freshwater monitoring. Chemosphere. 2006, 65, 1074–1081.

5

Chen, R. J.; Bangsaruntip, S.; Drouvalakis, K. A.; Kam, N. W. S.; Shim, M.; Li, Y. M.; Kim, W.; Utz, P. J.; Dai, H. J. Noncovalent functionalization of carbon nanotubes for highly specific electronic biosensors. Proc. Natl. Acad. Sci. USA 2003, 100, 4984–4989.

6

Cui, Y.; Wei, Q. Q.; Park, H. K.; Lieber, C. M. Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 2001, 293, 1289–1292.

7

Li, J.; Ng, H. T.; Cassell, A.; Fan, W.; Chen, H.; Ye, Q.; Koehne, J.; Han, J.; Meyyappan, M. Carbon nanotube nanoelectrode array for ultrasensitive DNA detection. Nano Lett. 2003, 3, 597–602.

8

Allen, B. L.; Kichambare, P. D.; Star, A. Carbon nanotube field-effect-transistor-based biosensors. Adv. Mater. 2007, 19, 1439–1451.

9

Dong, X. C.; Lau, C. M.; Lohani, A.; Mhaisalkar, S. G.; Kasim, J.; Shen, Z. X.; Ho, X. N.; Rogers, J. A.; Li, L. J. Electrical detection of femtomolar DNA via gold-nanoparticle enhancement in carbon-nanotube-network field-effect transistors. Adv. Mater. 2008, 20, 2389–2393.

10

Kim, J. P.; Lee, B. Y.; Lee, J.; Hong, S.; Sim, S. J. Enhancement of sensitivity and specificity by surface modification of carbon nanotubes in diagnosis of prostate cancer based on carbon nanotube field effect transistors. Biosens. Bioelectron. 2009, 24, 3372–3378.

11

Martinez, M. T.; Tseng, Y. C.; Ormategui, N.; Loinaz, I.; Eritja, R.; Bokor, J. Label-free DNA biosensors based on functionalized carbon nanotube field effect transistors. Nano Lett. 2009, 9, 530–536.

12

Geim, A. K. Graphene: Status and prospects. Science. 2009, 324, 1530–1534.

13

Geim, A. K.; Novoselov, K. S. The rise of graphene. Nat. Mater. 2007, 6, 183–191.

14

Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S. The structure of suspended graphene sheets. Nature 2007, 446, 60–63.

15

Campos-Delgado, J.; Romo-Herrera, J. M.; Jia, X. T.; Cullen, D. A.; Muramatsu, H.; Kim, Y. A.; Hayashi, T.; Ren, Z. F.; Smith, D. J.; Okuno, Y., et al. Bulk production of a new form of sp2 carbon: Crystalline graphene nanoribbons. Nano Lett. 2008, 8, 2773–2778.

16

Choucair, M.; Thordarson, P.; Stride, J. A. Gram-scale production of graphene based on solvothermal synthesis and sonication. Nat. Nanotechnol. 2009, 4, 30–33.

17

Ci, L.; Xu, Z. P.; Wang, L. L.; Gao, W.; Ding, F.; Kelly, K. F.; Yakobson, B. I.; Ajayan, P. M. Controlled nanocutting of graphene. Nano Res. 2008, 1, 116–122.

18

Park, S.; Ruoff, R. S. Chemical methods for the production of graphenes. Nat. Nanotechnol. 2009, 4, 217–224.

19

Reina, A.; Thiele, S.; Jia, X. T.; Bhaviripudi, S.; Dresselhaus, M. S.; Schaefer, J. A.; Kong, J. Growth of large-area single- and bi-layer graphene by controlled carbon precipitation on polycrystalline Ni surfaces. Nano Res. 2009, 2, 509–516.

20

Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A. Electric field effect in atomically thin carbon films. Science 2004, 306, 666–669.

21

Li, X. L.; Wang, X. R.; Zhang, L.; Lee, S. W.; Dai, H. J. Chemically derived, ultrasmooth graphene nanoribbon semi-conductors. Science 2008, 319, 1229–1232.

22

Ouyang, Y. J.; Dai, H. J.; Guo, J. Projected performance advantage of multilayer graphene nanoribbons as a transistor channel material. Nano Res. 2010, 3, 8–15.

23

Russell, J.; Kral, P. Configuration-sensitive molecular sensing on doped graphene sheets. Nano Res. 2010, 3, 472–480.

24

Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S. Detection of individual gas molecules adsorbed on graphene. Nat. Mater. 2007, 6, 652–655.

25

Watcharotone, S.; Dikin, D. A.; Stankovich, S.; Piner, R.; Jung, I.; Dommett, G. H. B.; Evmenenko, G.; Wu, S. E.; Chen, S. F.; Liu, C. P., et al. Graphene–silica composite thin films as transparent conductors. Nano Lett. 2007, 7, 1888–1892.

26

Wang, D. H.; Choi, D. W.; Li, J.; Yang, Z. G.; Nie, Z. M.; Kou, R.; Hu, D. H.; Wang, C. M.; Saraf, L. V.; Zhang, J. G., et al. Self-assembled TiO2–graphene hybrid nanostructures for enhanced Li-ion insertion. ACS Nano 2009, 3, 907–914.

27

Wang, Z. Y.; Zhang, H.; Li, N.; Shi, Z. J.; Gu, Z. N.; Cao, G. P. Laterally confined graphene nanosheets and graphene/SnO2 composites as high-rate anode materials for lithium-ion batteries. Nano Res. 2010, 3, 748–756.

28

Patchkovskii, S.; Tse, J. S.; Yurchenko, S. N.; Zhechkov, L.; Heine, T.; Seifert, G. Graphene nanostructures as tunable storage media for molecular hydrogen. Proc. Natl. Acad. Sci. USA 2005, 102, 10439–10444.

29

Dong, X. C.; Shi, Y. M.; Huang, W.; Chen, P.; Li, L. J. Electrical detection of DNA hybridization with single-base specificity using transistors based on CVD-grown graphene sheets. Adv. Mater. 2010, 22, 1649–1653.

30

Lu, J.; Do, I.; Drzal, L. T.; Worden, R. M.; Lee, I. Nanometal-decorated exfoliated graphite nanoplatelet based glucose biosensors with high sensitivity and fast response. ACS Nano. 2008, 2, 1825–1832.

31

Mohanty, N.; Berry, V. Graphene-based single-bacterium resolution biodevice and DNA transistor: Interfacing graphene derivatives with nanoscale and microscale biocomponents. Nano Lett. 2008, 8, 4469–4476.

32

Ohno, Y.; Maehashi, K.; Yamashiro, Y.; Matsumoto, K. Electrolyte-gated graphene field-effect transistors for detecting pH protein adsorption. Nano Lett. 2009, 9, 3318–3322.

33

Shan, C. S.; Yang, H. F.; Han, D. X.; Zhang, Q. X.; Ivaska, A.; Niu, L. Graphene/AuNPs/chitosan nanocomposites film for glucose biosensing. Biosens. Bioelectron. 2010, 25, 1070–1074.

34

Shan, C. S.; Yang, H. F.; Song, J. F.; Han, D. X.; Ivaska, A.; Niu, L. Direct electrochemistry of glucose oxidase and biosensing for glucose based on graphene. Anal. Chem. 2009, 81, 2378–2382.

35

Wu, H.; Wang, J.; Kang, X. H.; Wang, C. M.; Wang, D. H.; Liu, J.; Aksay, I. A.; Lin, Y. H. Glucose biosensor based on immobilization of glucose oxidase in platinum nanoparticles/ graphene/chitosan nanocomposite film. Talanta 2009, 80, 403–406.

36

Zhong, Z. Y.; Wu, W.; Wang, D.; Shan, J. L.; Qing, Y.; Zhang, Z. M. Nanogold-enwrapped graphene nanocomposites as trace labels for sensitivity enhancement of electrochemical immunosensors in clinical immunoassays: Carcinoembryonic antigen as a model. Biosens. Bioelectron. 2010, 25, 2379–2383.

37

Zhou, M.; Zhai, Y. M.; Dong, S. J. Electrochemical sensing and biosensing platform based on chemically reduced graphene oxide. Anal. Chem. 2009, 81, 5603–5613.

38

Wang, H. L.; Robinson, J. T.; Li, X. L.; Dai, H. J. Solvothermal reduction of chemically exfoliated graphene sheets. J. Am. Chem. Soc. 2009, 131, 9910–9911.

39

Mao, S.; Lu, G. H.; Yu, K. H.; Bo, Z.; Chen, J. H. Specific protein detection using thermally reduced graphene oxide sheet decorated with gold nanoparticle–antibody conjugates. Adv. Mater. 2010, 22, 3521–3526.

40

Wei, Q.; Mao, K. X.; Wu, D.; Dai, Y. X.; Yang, J. A.; Du, B.; Yang, M. H.; Li, H. A novel label-free electrochemical immunosensor based on graphene and thionine nanocomposite. Sens. Actuat. B-Chem. 2010, 149, 314–318.

41

Park, S.; An, J. H.; Piner, R. D.; Jung, I.; Yang, D. X.; Velamakanni, A.; Nguyen, S. T.; Ruoff, R. S. Aqueous suspension and characterization of chemically modified graphene sheets. Chem. Mater. 2008, 20, 6592–6594.

42

Park, S.; An, J. H.; Jung, I. W.; Piner, R. D.; An, S. J.; Li, X. S.; Velamakanni, A.; Ruoff, R. S. Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett. 2009, 9, 1593–1597.

43

Jung, I.; Dikin, D. A.; Piner, R. D.; Ruoff, R. S. Tunable electrical conductivity of individual graphene oxide sheets reduced at "low" temperatures. Nano Lett. 2008, 8, 4283–4287.

44

Li, X. L.; Wang, H. L.; Robinson, J. T.; Sanchez, H.; Diankov, G.; Dai, H. J. Simultaneous nitrogen doping and reduction of graphene oxide. J. Am. Chem. Soc. 2009, 131, 15939–15944.

45

Star, A.; Gabriel, J. C. P.; Bradley, K.; Gruner, G. Electronic detection of specific protein binding using nanotube FET devices. Nano Lett. 2003, 3, 459–463.

File
nr-4-10-921_ESM.pdf (240 KB)
Publication history
Copyright
Acknowledgements

Publication history

Received: 09 February 2011
Revised: 04 May 2011
Accepted: 06 May 2011
Published: 21 May 2011
Issue date: October 2011

Copyright

© Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2011

Acknowledgements

Acknowledgements

Financial support for this work was provided by the USA National Science Foundation (NSF) (Nos. CMMI-0900509, CBET-0803142, and ECCS-0708998). Graphene oxide samples were supplied by Prof. Rodney S. Ruoff. The authors thank Dr. Heather A. Owen for technical support with SEM, and Dr. Leonidas E. Ocola for assistance in the electrode fabrication. The e-beam lithography was performed at the Center for Nanoscale Materials of Argonne National Laboratory, which is supported by the USA Department of Energy (No. DE-AC02-06CH11357). The SEM imaging was conducted at the Electron Microscope Laboratory of University of Wisconsin-Milwaukee.

Return